

ii) Convert the following statement to symbolic form and also write its negation "for all x, if x is odd then $x^2 - I$ is even".

P170	CS34 Page No	. 2
b.	Find whether the following argument is valid;	
	If a triangle has two equal sides, then it is isosceles.	
	If a triangle is isosceles, then it has two equal angles.	8
	The triangle ABC does not have two equal angles.	
	Therefore ABC does not have two equal sides.	
c.	Prove that the following argument is valid where in 'c' is specified element of the universe:	

$$\forall x[p(x) \to q(x)] \forall x[q(x) - r(x)]$$
 10
$$\neg r(c)$$

$$\therefore \neg p(c)$$

UNIT - III

18

8

10

10

- 3 a. Prove by mathematical induction that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$ 8
 - b. A sequence $\{C_n\}$ is defined recursively by $C_n = 3 C_{n-1} 2C_{n-2}$ for all $n \ge 3$ with $C_1 = 5$ and $C_2 = 3$ as initial conditions. Show that $C_n = -2^n + 7$.
 - c. If $A = \{1, 2, 3, 4\}, B = \{2, 5\}, C = \{3, 4, 7\}$, determine A×B, B×A, A \cup (B×C), (A \cup B)×C, (A×C) \cup (B×C).

- 4 a. Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (3, 1), (3, 3), (1, 3)(4, 1)(4, 4)\}$ be a relation on A. Is R is an equivalence relation?
- b. The digraph for a relation on A = {1, 2, 3, 4} is shown in Fig.4(b), i) Verify that (A, R) is a poset and find its Hasse diagram and ii) Topological set (A, R)

c. For the Posets shown in Fig. 4(c), find;

i) All upper bounds ii) LUB and GLB of the set B, where $B = \{3, 4, 5\}$

18

8

- 5 a. Define the following terms with respect to coding theory:
 - i) Parity Check code
 - ii) Hamming distance
 - iii) Group code
 - iv) Generator matrix
 - b. What is cyclic group? Explain and hence show that group (G, *) whose multiplication table given is cyclic

*	a	b	С	d	е	f
a	a	b	С	d	е	f
b	b	С	d	е	f	а
С	c	d	е	f	а	b
d	d	е	f	а	b	С
е	e	f	а	b	С	d
f	f	а	b	С	d	е

Define subgroup. If H, K are subgroup of G, Prove that $H \cap K$ is also subgroup. c.

10

* * *