U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2019 Computer Organization

Time: 3 hrs Max. Marks: 100

 $\underline{Note} \hbox{:}\ i)\ PART\ \hbox{-}\ A$ is compulsory. Two marks for each question.

ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks				
	I: PART - A	10				
I a.	Write a neat diagram of processor cache.	2				
b.	Give input/output instructions.	2				
c.	List the steps involved in execution of a complete instruction.	2				
d.	Give the memory hierarchy of a computer.					
e.	Write generate and propagate function of carry lookahead addition.	2				
II: PART - B						
	UNIT - I	18				
1 a.	Describe basic functional units of a computer with a neat diagram.	9				
b.	Explain the connection between the processor and the memory in detail.	9				
c.	i) Brief explains Big-Endian and Little-Endian methods.	9				
	ii) Write basic performance equation and briefly explain the parameters.					
	UNIT - II	18				
2 a.	List and explain the various addressing modes with an example.	14				
b.	Write an ALP to add <i>N</i> numbers stored in memory and store the result in memory.	14				
c.	Explain the instruction associated with substances call and return.	4				
	UNIT - III	18				
3 a.	With a block diagram, explain single bus organization of the data path inside a processor.	14				
b.	Explain the execution of the instruction Add (R3), R1.	14				
c.	Explain memory mapped I/O and programmed controlled I/O.	4				
	UNIT - IV	18				
4 a.	Explain with diagram the organization of ROM.	9				
b.	Explain different mapping techniques of cache memory with a diagram.	9				
c.	Explain memory performance consideration.	9				
	UNIT - V	18				
5 a.	Explain 4 bit carry Lookahead adder.	9				
b.	Explain hardware arrangement for sequential circuit binary multiplier with block diagram.	9				
c.	Explain IEEE standard for floating point numbers with example each.	9				