P18	Page N	Io 1
Tin	U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. – Computer Science and Engineering Semester End Examination; Dec 2019 Digital Logic Design	s: 100
Note	 E: I) PART - A is compulsory. One question for 2 marks from each unit. II) PART - B: Answer any <u>two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. 	
Q. No.	Questions	Marks
	I : PART - A	10
I a.	State duality principle with example.	2
b.	Explain de-multiplexer with the help of block diagram.	2
c.	Give any two differences between sequential and combinational circuit.	2
d.	List: i) Types of register ii) Application of shift register.	2
e.	Give verilog structural code for the following Fig.QI(e): $\sqrt{2}$	
	6-1-1-2	2

	II : PART - B	90
	UNIT - I	18
1 a.	Give the truth table for the following function and reduce the same using k-map technique.	C
	$F(A, B, C, D) = \Pi M(0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6)$	0
b.	Define min term, max term, negative logic and positive logic. Simplify the following function	
	using k-map technique and implement using Basic gates	12

Figure Q1(e)

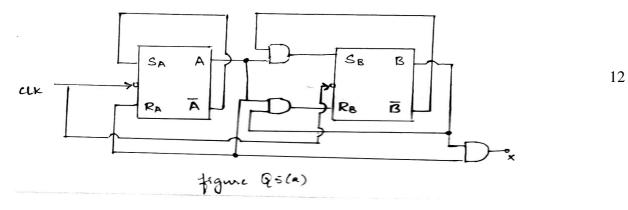
C

- Y

 $F(A, B, C, D) = \overline{ABD} + AB\overline{CD} + \overline{ABD} + ABC\overline{D}$

Simplify the following expression using tabulation method and give the circuit for essential c. prime implicant.

$$F(A, B, C, D) = \sum m(1, 3, 6, 7, 8, 9, 10, 12, 14, 15) + d(11, 13)$$


What is magnitude comparator? Design one bit comparator using basic gates. 9 2 a.

12

P18CS32

b.	Explain 4-line to 16-line decoder with relevant circuit shows a 3 to 8 decoder and multi-input	
	OR gates, following Boolean expressions can be realized simultaneously,	
	$F_1(A, B, C) = \sum m(0, 2, 6)$	9
	$F_2(A, B, C) = \sum m(1, 2, 3, 7)$	
	$F_{3}(A,B,C) = \sum m(4,7)$	
c.	Explain multiplexer in detail. Implement the following function using 8:1 multiplexer:	
	$F(A, B, C, D) = \sum m(0, 2, 4, 5, 8, 11, 14) + d(1, 7, 15)$	9
	UNIT - III	18
3 a.	Convert the following flip flop and draw the circuit:	0
	i) SR flip flop to JK flip flop ii) SR flip flop to T flip flop	9
b.	Give the state transition, characteristic equation, and excitation table for SR, JK and D flip	0
	flop.	9
c.	With a neat circuit diagram explain Programmable Logic Array (PLA). Design 7-segment	0
	decoder using PLA.	9
	UNIT - IV	18
4 a.	With a relevant circuit, wave form and truth table explain ripple down counter.	9
b.	Explain the following:	
	i) Switched tail Counter	0
	ii) Sequence Generator and Sequence Detector	9
	iii) Serial Adder	
c.	Design a mod-5 synchronous counter using JK flip flop and implement the same.	9
		10

5 a. Give the output function transition table and state diagram by analyzing the sequential circuit shown in Fig. (a).

- b. Give the state synthesis table, design equation and circuit diagram for vending machine problem (Mealy Model).
- c. Write the VHDL code for :

i) D-flip flop ii) 8:1 Multiplexer

6

12

18