\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering
Semester End Examination; Dec. - 2019
Discrete Mathematical Structures
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

Marks

I : PART - A
I a. For any two propositions p, q. Prove that $(p \rightarrow q) \Leftrightarrow(\neg p) \vee q$.
b. Obtain the recursive definition for the sequence $\left(a_{n}\right)$ given by $a_{n}=n(n+2)$.
c. Let $f: A \rightarrow B$ be a function and C and D be arbitrary non-empty subsets of B . Then prove that $f^{-1}[C \cap D]=f^{-1}(C) \cap f^{-1}(D)$
d. In a class of 52 students, 30 are studying C++, 28 are studying PASCAL and 13 are studying both languages. How many in this class are studying at least one of these languages? How many are studying neither of these languages?
e. Given :

Find; $\mathrm{G}_{1} \cup \mathrm{G}_{2}$.
II : PART - B 90
UNIT - I 18

1 a. Prove that for any three propositions $p, q, r \quad[(p \vee q) \rightarrow r] \Leftrightarrow[(p \rightarrow r) \wedge(q \rightarrow r)]$.
b. Test the validity of the following argument;

$$
\begin{aligned}
& p \rightarrow(q \rightarrow r) \\
& \neg q \rightarrow \neg p \\
& p
\end{aligned}
$$

$$
\therefore r
$$

c. Test the validity of the following argument If I study. I will not fail in the examination If I do not watch TV in the evenings. I will study. I failed in the examination.

UNIT - II

2 a. Prove by mathematical induction

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+-----+n^{2}=\frac{1}{6} n(n+1)(2 n+1) \tag{9}
\end{equation*}
$$

b. i) A sequence $\left(a_{n}\right)$ is defined recursively by $a_{l}=4, a_{n}=a_{n-1}+n$ for $n \geq 2$. Find a_{n} in explicit form.
ii) Find the number of ways that a judge can award first, second and third places in a contest with eighteen contestants.
c. Find the number of ways that three American, four Frenchmen, four Danes and two Italians can be seated in a row so that those of the same nationality sit together

UNIT - III
3 a. State pigeon hole principle and extended pigeon hole principle. Find the least number of ways of choosing three different numbers from 1 to 10 so that all choices have the same sum.
b. Draw the Hasse diagram representing the positive divisors of 36,50 .
c. Let " R " be a relation defined on $\mathrm{A}=\{1,2,3,4,5\}$ as $(a, b) \in \mathrm{R}$ iff $\mathrm{a} \equiv \mathrm{b}(\bmod 3)$
i) Prove that R is an equivalence relation
ii) Write the relation matrix $M(R)$
iii) Draw the Digraph
iv) Find the partition induced by R on A

UNIT - IV

4 a . Find the rook polynomial of the board that is obtained from a 3×3 board by deleting the middle square in the first row and the first and the last squares in the third row.
b. i) Solve $a_{n}=4 a_{n-1} n \geq 1$ given $a_{0}=3$
ii) Solve the recurrence relation $a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 2 a_{0}=5, a_{l}=3$.
c. Determine the number of integers between 1 to 300 which are,
i) Divisible by two of 5, 6, 8
ii) Divisible by at least two of $5,6,8$

UNIT - V

5 a. Define planar graph and prove that "A connected planar with n vertices and e edges has exactly $e-n+2$ regions".
b. Define the following terms :
i) Euler graph
ii) Hamiltonian graph
iii) Bipartite graph
c. Define prefix code. Construct an optimal prefix code tree and code for the message "HAPPY INDEPENDENCE DAY".

