

e. Given:

Find; $G_1 \cup G_2$.

	II : PART - B	90	
	UNIT - I		
1 a.	. Prove that for any three propositions p, q, r $[(p \lor q) \to r] \Leftrightarrow [(p \lor q) \to r]$	$p \to r) \land (q \to r)].$ 9	

b. Test the validity of the following argument;

studying neither of these languages?

 $p \rightarrow (q \rightarrow r)$ $\neg q \rightarrow \neg p$ p $\therefore r$

Test the validity of the following argument c.

If I study. I will not fail in the examination

If I do not watch TV in the evenings. I will study. I failed in the examination.

:. I must have watched TV in the evenings

2

9

9

P18CS35

18

9

18

9

9

9

2 a. Prove by mathematical induction

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$
9

b. i) A sequence (a_n) is defined recursively by $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find a_n in explicit form.

ii) Find the number of ways that a judge can award first, second and third places in a contest with 9 eighteen contestants.

- c. Find the number of ways that three American, four Frenchmen, four Danes and two Italians can be seated in a row so that those of the same nationality sit together
 - UNIT III
- 3 a. State pigeon hole principle and extended pigeon hole principle. Find the least number of ways of choosing three different numbers from 1 to 10 so that all choices have the same sum.
 - b. Draw the Hasse diagram representing the positive divisors of 36, 50.
 - c. Let "R" be a relation defined on A = $\{1, 2, 3, 4, 5\}$ as $(a, b) \in \mathbb{R}$ iff a \equiv b (mod 3)

i) Prove that R is an equivalence relation

- ii) Write the relation matrix M(R)
- iii) Draw the Digraph
- iv) Find the partition induced by R on A

4 a.	Find the rook polynomial of the board that is obtained from a 3 x 3 board by deleting the middle	0
	square in the first row and the first and the last squares in the third row.	9

- b. i) Solve $a_n = 4 a_{n-1} n \ge 1$ given $a_0 = 3$ ii) Solve the recurrence relation $a_n = 3 a_{n-1} - 2 a_{n-2}$ for $n \ge 2 a_0 = 5$, $a_1 = 3$.
- c. Determine the number of integers between 1 to 300 which are,
 - i) Divisible by two of 5, 6, 8
 - ii) Divisible by at least two of 5, 6, 8

- 5 a. Define planar graph and prove that "A connected planar with *n* vertices and *e* edges has exactly e - n + 2 regions".
- b. Define the following terms :
 - i) Euler graph
 - ii) Hamiltonian graph
 - iii) Bipartite graph
- c. Define prefix code. Construct an optimal prefix code tree and code for the message "HAPPY INDEPENDENCE DAY". 9

* * *

18

9

9