U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2019 Digital Electronic Circuits

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT-I

1 a.	. Explain the following parame	ters to characterize logic families:						
	i) Noise margin	ii) Fan-out	8					
	iii) Power dissipation	iv) Propagation delay						
b.	. Draw the circuit diagram and	write the truth table of a two-input DTL NAND gate.	6					
C.	. Analyze the working of 2 inp	ut TTL totem pole NAND gate along with schematic.	6					
2 a.	Explain the operation of n-channel enhancement type MOSFET with required diagram and I-V							
	characteristics plot.		8					
b.	. Analyze the working of a two	input NMOS nor gate with circuit diagram and truth table.	6					
c.	. Construct a 2-input CMOS N	AND gate and explain its operation.	6					
		UNIT - II						
3 a.	. Simplify using k-map and det	Simplify using k-map and determine SOP and POS expressions for the function,						
	$f(w, x, y, z) = \sum m(0, 1, 3, 7, 8)$	12)+dc(5, 10, 13, 14).	10					
b.	Given $f(w, x, y, z) = \sum m(1, 3, y)$	4, 5, 6, 7, 11, 14, 15), using Karnaugh map,						
	i) Find the essential prime in	plicants	10					
	ii) Find the minimum sum of	products	10					
	iii) Find all the prime implie	eants						
4 a.	Simplify using QM minimiza	tion technique $f(w, x, y, z) = \sum m(0, 5, 6, 7, 9, 10, 13, 14, 15)$.	10					
b.	. Obtain a minimal sum for the	incompletely specified Boolean function,	10					
$f(w, x, y, z) = \sum m(0, 4, 5, 6, 13, 14, 15) + dc(2, 7, 8, 9)$ using VEM Map.		10						
		UNIT - III						
5 a.	. Describe the working of bina	ry full adder and obtain the expression for sum and carry. Realize	8					
	it using basic gates.							
b.	. Realize the following Boolean	n expressions,						
	$f_1(x_2, x_1, x_0) = \Pi M(0, 1, 3, 5)$) and $f_2(x_2, x_1, x_0) = \Pi M(1, 3, 6, 7)$ using 3:8 active low decoder	(
	with, i) OR gate ii) NOR gat	e.	6					
c.	. Design a 4-bit priority encode	er assigning highest priority to the largest number.	6					
6 a.	. Implement the following Boo	mplement the following Boolean function using, i) 8:1 mux ii) 4:1 mux						
	$f(x, y, z) = \sum m(0, 2, 3, 5).$	$f(x, y, z) = \sum m(0, 2, 3, 5).$						

	P15EC33 Page No 2					
b.	Design and implement the following expressions using $3 \times 4 \times 2$ PLA,	10				
	$f_1(x, y, z) = \sum m(0, 1, 3, 4)$ and $f_2(x, y, z) = \sum m(1, 2, 3, 4, 5)$	10				
	UNIT - IV					
7 a.	What is SR latch? Write its gate level logic diagram and function table. Illustrate its application	10				
	as a switch de bouncer along with waveforms.	10				
b.	. Describe with neat diagram the working of a master slave JK flip-flop using gated SR latch.					
8 a.	Explain the following with gate level schematic,					
	i) Gated SR latch	10				
	ii) Gated D latch					
b.	Analyze the working of positive edge triggered D-flip-flop with neat gate level schematic.	10				
	UNIT - V					
9 a.	Draw the logic schematic for the following shift registers,					
	i) SISO ii) SIPO iii) Universal shift register	10				
	Also write the mode control table for, iii) (Considering 3-bit registers)					
b.	Design a synchronous mod-6 counter for the following sequence,	10				
	0, 2, 3, 6, 5 using JK flip-flop.	10				
10 a.	Draw logic schematic for the following counters based on shift registers:					
	i) Mod-4 ring counter	10				
	ii) Mod-8 twisted ring counter	10				
	Also write the count sequence table for each.					
b.	Explain with a neat diagram the architecture of 8086 microprocessor.	10				