Time: 3 hrs

Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I

- 1 a. With the help of relevant diagram, explain the structure and working of Metal Oxide Semiconductor (MOS).
 - b. Develop the threshold voltage equation of a MOS transistor.
 - c. Consider an n-channel MOS process with the following parameters: Substrate doping density $N_A = 10^{16}$ cm⁻³, polysilicon gate doping density N_D (gate) = 2×10²⁰ cm⁻³, gate oxide thickness $t_{ox} = 50$ mm oxide interface fixed charge density $N_{ox} = 4 \times 10^{10}$ cm⁻² and source and drain diffusion doping density $N_D = 10^{17}$ cm⁻³. In addition, the channel region is implemented with p-type impurities ($N_I = 2 \times 10^{11}$ cm⁻²) to adjust the threshold voltage. The junction depth of the source and drain diffusion regions is $X_j = 1.0$ µm. Plot the variation of the zero-bias threshold voltage V_{TO} as a function of the channel length ($V_{DS} = V_{SB} = 0$) also find the V_{TO} for $\alpha = 0.7$ µm, $V_{DS} = 5$ V and $V_{SB} = 0$.
- 2 a. Explain the concept of constant field scaling.
- b. Analyze the short channel effects with relevant equations.
- c. Consider a simple abrupt pn-junction, which is reverse biased with a voltage V_{bias}. The doping density of the n-type region is $N_D = 10^{19}$ cm⁻³, and doping density of the p-type region is given as $N_A = 10^{16}$ cm⁻³. The junction area is $A = 20 \ \mu m \times 20 \ \mu m$. Calculate;

i) C_{jo} ii) If input voltage changes from 0 to -5 V, calculate equivalent capacitance.

UNIT - II

- 3 a. Explain the depletion NMOS load inverter with relevant equation.
 - b. Consider a CMOS inverter circuit with the following parameters: $V_{DD} = 3.3 \text{ V}, V_{TO, n} = 0.6 \text{ V}, V_{TO, p} = -0.7 \text{ V}, K_n = 200 \ \mu\text{A/V}^2, K_p = 80 \ \mu\text{A/V}^2$. Calculate the noise 12 margin of the circuit (K_R = 2.5 and V_{TO, n} + |V_{TO, P}|).
- 4 a. Discuss the calculation of Interconnect delay of RC network.
- b. A company has access to a CMOS fabrication process with the device parameters listed below: $\mu_n C_{ox} = 120 \ \mu A/V^2$, $\mu_p C_{ox} = 60 \ \mu A/V^2$, L = 0.6 μm for both nMOS and pMOS device, $V_{TO, n} = 0.8 \ V$, $V_{TO, p} = -1.0 \ V$, $W_{min} = 1.2 \ \mu m$. Design a CMOS inverter by determining the channel widths W_n and W_P of the NMOS and PMOS transistors, to meet the following performance specifications;

Page No... 1

6

7

7

6

7

7

8

12

- i) $V_{th} = 1.5 \text{ V}$ for $V_{DD} = 3 \text{ V}$
- ii) $\tau^*_{PHL} \! \leq \! 0.2 \text{ ns and } \tau^*_{PHL} \! \leq \! 0.15 \text{ ns}$
- iii) A falling delay of 0.35 ns for an output transition from 2 V to 0.5 V,

assuming a combined output load capacitance of 300 fF and ideal step input.

UNIT - III

5 a.	Analyze the CMOS NOR2 (Two-Input NOR) gate with relevant equations.	8
b.	Design the CMOS logic circuit for the function $Z = \overline{A(D+E) + BC}$.	5
c.	Analyze the bias conditions and operating regions of CMOS transmission gates.	7
6 a.	With relevant diagrams and equations explain the behavior of Bistable elements.	8
b.	Design the CMOS SR latch circuits using NOR2 gates.	5
c.	Analyze the function of a CMOS implementation of the D-Latch.	7
	UNIT - IV	
7 a.	Analyze the working principle of Pass transistor circuit for logic '1' transfer.	8
b.	Design and sketch the dynamic CMOS logic circuit for the Boolean function	-
	$Z = \overline{(A+B+C) + (BC)}.$	5
c.	Analyze the working principle of CMOS transmission gate dynamic shift register.	7
8 a.	Design and sketch the Domino CMOS logic circuit for the Boolean function $Z = \overline{ABC + (B+C)}$.	5
b.	Analyze the working principle of True Single Phase Clock (TSPC) dynamic CMOS.	7
c.	Analyze the voltage boot strapping with relevant equations.	8
UNIT - V		
9 a.	Analyze the charge control model of BJTs with relevent diagarm and equation.	10
b.	Discuss the switching delay in BiCMOS logic circuit with related circuits diagrams and	10
	waveforms.	10
10 a.	Discuss the ESD protection adopted to protect the circuit with an example.	10
b.	Mention the guidelines for avoiding latch-up in CMOS circuit.	5
c.	Discuss the process of simple on chip clock generation using ring oscillator.	5

* * *