

3 a. Apply the Histogram equalization technique to 4×4 image given by,

f(x, y) =	[1	2	3	4]
	5	5	6	6
	6	7	6	6
	6	7	2	3

and obtain the final image.

- b. Explain how Log, Exponential and Power law transformations are used for spatial image 10 enhancement?
- 4 a. Explain image sharpening in spatial domain using second order Laplacian derivative.
 - b. A gray-level image $g(x, y) = \begin{bmatrix} 10 & 15 \\ 20 & 50 \end{bmatrix}$ whose range is 10 60. What should be the required 4 gray-level transformation to get the image with range 120 180?
 - c. Explain Smoothing of images in frequency domain using one dimension and two dimension ideal LPF.

8

UNIT - III

5 a.	Discuss the various filters for restoration in the presence of noise.					
b.	Explain the important noise proability density functions.					
6 a.	Discuss the various filters used to remove the periodic noise present in an image.					
b.	What is the issue with inverse filtering for restoring image? Explain with appropriate equations					
	how Wiener filter takes care of these?					
	UNIT - IV					
7 a.	Mention different edges encountered in image processing and also explain the process of edge detection.	10				
b.	b. Explain derivative types of edge detection operation.					
8 a.	a. For the image A and B obtain the result of gray scale dilation and erosion,					
	$A = \begin{bmatrix} 7 & 8 & 2 & 4 \\ 6 & 4 & 3 & 3 \\ 7 & 3 & 6 & 6 \\ 4 & 4 & 2 & 3 \end{bmatrix}; \qquad B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	8				
b.	Explain properties of opening and closing operations.	8				
c.	Discuss the following morphological algorithms:					
	i) Boundary Extraction	4				
	ii) Thinning					
	UNIT - V					
9 a.	Explain the procedure for converting RGB to HSI Colour model and Vice-Versa?					
b.	b. What is pseudo color image processing? Explain intensity slicing as applied to pseudo color					
	image processing.	10				
10 a.	Differentiate lossy compression with lossless compression techniques.					
b.	Discuss the different types of image compression techniques.					
c.	Determine HSV equipment of RGB for the points $RGB = (0.4, 0.6, 0.8)$.					

* * *