P.E.S. College of Engineering, Mandya - 571 401				
(An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E Electronics and Communication Engineering				
Seventin Semester, D.E Electronics and Communication Engineering Semester End Examination; Dec 2019				
Low Power VLSI Design				
Time: 3 hrs Max. Marks: 100				
<i>Note:</i> Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit. UNIT - I				
1 a.	Explain the need for low power VLSI Design.	5		
b.	With neat diagram, explain the structure of MIS diode. Draw the energy band diagram of	10		
	biased MIS Diode.	10		
c.	Derive an equation for the depth of the depletion region.	5		
2 a.	Explain the concept of body effect in long channel MOSFET.	4		
b.	Derive an expression for short circuit and dynamic power dissipation of a CMOS.	8		
c.	Discuss the overall Load Capacitance of the inverter.	8		
UNIT - II				
3 a.	Explain the conceptual level diagram of possible improvement in power dissipation at various levels.	6		
b.	Explain with it data flow graph of transposed direct from FIR computation.	8		
c.	Derive the first order difference algorithm for a discrete LTI-FIR system.	6		
4 a.	Explain the power optimization using driven voltage scaling.	10		
b.	Explain the power optimization using operation reduction and operation substitution.	10		
UNIT - III				
5 a.	Analyze the power consumption of CMOS gates for the function $Y = \overline{(X_1 + X_2)X_3}$.	8		
b.	Explain the following terms in transistor reordering:			
	i) Delay	6		
	ii) Optimization algorithm	0		
	iii) Power consumption			
c.	Explain how transistor sizing plays an important role in power dissipation minimization?	6		
6 a.	Explain the ratio-logic using only NMOS and pseudo NMOS logic network.	6		
b.	Explain with neat diagram and silent features of the Domino logic and differential current switch logic.	8		
c.	What are the factor influencing leakages current in deep sub micrometer transistor?	6		

UNIT - IV

7 a.	xplain the low voltage design techniques with respect to reverse V_{gs} , Steeper sub-threshold	10
	swing in MOS circuits.	10
b.	Write a note on multiple supply voltages.	10
8 a.	Explain organization of a static RAM.	8
b.	Draw the circuit diagram of 6 T-SRAM cells.	4
c.	Discuss the banking organization of SRAM.	8
	UNIT - V	
9 a.	Discuss how the energy dissipation in transistor channels using an RC model?	6
b.	Design NAND gate using adiabatic switching for reversible logic.	6
c.	Explain the generic resonant scheme for adiabatic clock generation circuit.	8
10 a.	Explain various factors essential for software power estimation.	10
b.	Explain any two software power optimization with suitable example.	10

* * *