U.S.N					

iii) $ab + \overline{ac} + a\overline{bc}[ab + c]$

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2019

Digital Electronic Circuits

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit ii) Missing data if any, may be suitably assume.

iy dissume.

1 a. Convert the given Boolean function into min-term Canonical form,

i)
$$R = f(a,b,c) = (\overline{a} + b)(b + \overline{c})$$

ii)
$$P = f(x, y, z) = x + \overline{x} \overline{z}(y + \overline{z})$$

b. Simplify the following function into minimum number of literals,

i)
$$xyz + \overline{x}y + xy\overline{z}$$
 ii) $xz + \overline{x}zy$

iii)
$$y(w\overline{z} + wz) + xy$$
 iv) $xy + \overline{x} + \overline{xy}$

- c. State and prove;
 - i) Distributive ii) Absorption law of Boolean Algebra using identities
- 2 a. State and Prove the De-Morgan's theorem for three variables using truth table.
- b. Simplify the following Boolean expression,

i)
$$a + \overline{a}b + ab\overline{c}$$
 ii) $a + \overline{a}b + abc + a\overline{c}$

c. Convert the following expression into standard SOP form:

i)
$$AC + AB + BC = f(A, B, C)$$
 ii) $A + ABC = f(A, B, C)$

UNIT - II

3 a. Find the minimal product of the following Boolean function using Karnaugh map,

i)
$$f(a,b,c,d) = \sum (7,9,11,12,13,14) + \sum d(3,5,6,15)$$

ii) $f(a,b,c,d) = \prod (2,8,11,15) + \prod d(3,12,14)$

b. Simplify the given Boolean function using Quine Mccluskey method,

$$y = f(a,b,c,d) = \sum (0,1,2,6,7,9,10,12) + d(3,5)$$
. Verify the result using K-map.

4 a. With a neat logic diagram, explain Look-ahead carry adder.

b. With a neat logic diagram, explain;

ii) Full adder

Contd...2

8

6

6

8

8

12

10

UNIT - III

- 5 a. Differentiate Latch and Flip flop.
 - b. With a neat logic diagram, explain Master Slave JK flip flop.
 - c. With a neat logic diagram, explain 8 line to 3 line, priority encoder.
- 6 a. Realize the following Boolean function:

$$P = f(w, x, y, z) = \sum (0, 1, 5, 6, 7, 10, 15)$$

- using, i) 16 to 1 MUX
- ii) 8: 1 MUX
- iii) 4: 1 MUX
- b. Distinguish between a decoder and an encoder. Implement full adder using IC 74138.

10

10

10

10

10

10

4

UNIT-IV

7 a. Construct the excitation table, transition table, state table and state diagram for the Moore sequential circuit shown below,

b. With a neat logic diagram, explain;

i) SISO

ii) SIPO

8 a. Analyze the synchronous sequential circuit given below,

b. Design a synchronous 5421 code sequencer using positive edge triggered D flip-flop with minimal combinational circuit.

UNIT - V

- 9 a. With a neat circuit diagram, explain the operation of 2-input TTL NAND gate with Totem pole output.
- b. With a neat diagram, explain weighted DAC and successive approximation ADC.
- 10a. Draw a 4 bit D/A converter using R-2R resistors and explain it working.
 - b. With a neat circuit diagram, explain two inputs CMOS NAND gate.