3

5

6

			U.S.N											
	PFS C	'allege af Fngi	L	Nani	 va		<u>.</u> 571	<u></u>	_ _					
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)													
	Fifth Semester, B.E Industrial Production and Engineering													
	Semester End Examination; Dec 2019 Composite Materials													
	Time: 3 hrs	Compo		13			M	ax. M	lark:	s: 1	00			
	Note: Answer FIVE full	questions, selecting (DNE full question	on from	eac	h un	it.							
		τ	U NIT - I											
1 a.	What is a composite? H	low composites are cla	assified?								1(
b.	Write a note on;													
	i) Fiber reinforced com	iposites									1(
	ii) Particle reinforced c	composites												
2 a.	What are the advantage	What are the advantages and limitations of composites over other class of materials?												
b.	Discuss the following:													
	i) Laminated Composit	tes									1(
	ii) Polymer Nano comp	posites												
		ť	JNIT - II											
3 a.	Explain briefly the need	1 for developing Metal	l Matrix Compo	osites.							7			
b.	List the various types of reinforcements used in Metal Matrix Composites.													
c.	What are the advantage	What are the advantages and limitations of Metal Matrix Composites?												
4.	Write a note on applications of composite materials in following sectors:													
	i) Marine sector	ii) Sports see	ctor								20			
	iii) Automobile sector	iv) Future po	otential of comp	osites										
		U	NIT - III											
5 a.	Explain the relationship	0 0						plianc	es.		1(
b.	Derive the expressions for Hooke's Law for a Two-dimensional angle Lamina.								1(
6 a.	Write a generalized Hooke's law in matrix form. Develop the stiffness matrix and compliance									ce 1(
	matrix for an orthotropi													
b.	Estimate the compliance and stiffness matrix for a graphite/epoxy lamina using the following										ıg			
	properties:													
	$E_1 = 181 \text{ GPa},$	$E_2 = 10.3 \text{ GPa},$									1(
	$V_{12} = 0.28,$	$V_{23} = 0.60,$	$V_{13} = 0.2$											
	$G_{12} = 7.17 \text{ GPa},$) GPa										
		U	NIT - IV											

7. Develop an expression for the three stiffness matrices [A], [B] and [D] for 2D Laminate 20 composite.

	P15IP561 Page No 2											
8 a.	Compute the three stiffness matrices [A], [B] and [D] for a three-ply [0/30/-45] graphite /epoxy											
	laminate. Assume that each lamina has a thickness of 5mm.											
	$E_1 = 181 \text{ GPa},$ $E_2 = 10.3 \text{ GPa},$ $V_{12} = 0.28,$ $G_{12} = 7.17 \text{ GPa}$											
b.	Summarize the laminate codes with sketches.	5										
UNIT - V												
9 a.	Explain the following process:											
	i) Pultrusion	12										
	ii) Filament winding											
b.	List the NDT methods. Explain Radiology with a neat sketch.											
10 a.	Identify the purpose of NDT. Outline the principle of ultrasonic inspection.											
b.	Illustrate the following process:											
	i) Hand lay-up technique	12										
	ii) Vacuum bag molding											

* * *