U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)

 Seventh Semester, B.E. -Industrial and Production Engineering

 Seventh Semester, B.E. -Industrial and Production Engineering Semester End Examination; Dec. - 2019 Semester End Examination; Dec. - 2019 Operations Research

 Operations Research}

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I

1a. Discuss the phases of Operation Research in detail.
b. A person requires atleast 10,12 and 12 units of chemical A, B and C respectively for his garden. The liquid product contains 5, 2 and 1 units of A, B and C respectively /jar. Dry product contains 1,2 and 4 units of A, B and C per carton. If the liquid product is purchased at Rs.30/jar and dry product at Rs.20/carton how many of each should be purchased to minimize the cost and meet the requirement identify the total expenditure.
2a. Explain the basic requirements of linear programming problem.
b. A manufacturing company makes the products X and Y and has a maximum production capacity of 9 tons/day. The firm has the permanent contract to supply at least 2 tons of X and atleast 3 ton of y per day to another company. Each tons of X requires 20 machine hrs production times while Y requires 50 machine hrs. Maximum available machine hrs is 360 . The profit made is Rs. 160 per ton of X and Rs. 240 per ton of Y . It is required to evaluate the production schedule for maximum profit.

UNIT - II

3 a . What do you mean by degeneracy in simplex problem? How do you break it?
b. Solve by simplex method.
$\operatorname{Min} \mathrm{Z}=x_{1}-3 x_{2}+2 x_{3}$
Sub to: $3 x_{1}-x_{2}+3 x_{3} \leq 7$

$$
\begin{aligned}
& -2 x_{1}+4 x_{2} \leq 12 \\
& -4 x_{1}+3 x_{2}+8 x_{3} \leq 18
\end{aligned}
$$

Where $x_{1}, x_{2}, x_{3} \geq 0$
4 a . Write the dual form of the following primal problem:
$\operatorname{Max} \mathrm{Z}=8 x_{1}+16 x_{2}$
Sub to: $12 x_{1}+9 x_{2} \leq 24$

$$
6 x_{1}+10 x_{2} \leq 18 \text { Where } x_{1}, x_{2} \geq 0
$$

b. $\operatorname{Max} \mathrm{Z}=x_{1}+2 x_{2}+3 x_{3}-x_{4}$

Sub to: $x_{1}+2 x_{2}+3 x_{3}=15$

$$
2 x_{1}+x_{2}+5 x_{3}=20
$$

$$
x_{1}+2 x_{2}+x_{3}+x_{4}=10
$$

Where $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$. Solve the above problem.

UNIT - III

5 a . List the similarities between assignment problem and transportation problem.
b. A company has five territories and five salesmen available for assignment. The territories are not equal rich in their sales potential. It is estimated that a typical salesmen operating in the each territory bring the following sales:

Territory	1:70000	Salesman	A:6
	2:60000		B:5
	3:50000		C:5
	4:40000		D:4
	5:30000		E:3

6 a. Explain degeneracy in transportation problem. How do you break it?
b. Paper manufacturing company has several plants, three of which manufactures two products a standard card and a deluxe card. A new deluxe card will be introduced which must be considered in terms of selling and cost. The selling prices are standard card Rs.14.95,deluxe card Rs.18.95 and a new deluxe card is Rs. 21.95

Standard card	8.00	7.95	8.10	450
Deluxe card	8.50	8.60	8.45	1050
New deluxe card	9.25	9.20	9.30	600
Demand bj	800	600	700	

7 a. Discuss the need for replacement with examples.
b. A manufacturer offered two machines ' A ' and ' B ' ' A ' is priced at Rs. 5000 and running costs are estimated at Rs. 800 for each of first five years, increasing by Rs. 200 in the $6^{\text {th }}$ and subsequent years. Machine B which has the same capacity and has a cost of Rs. 2500, but it has the running cost of Rs. 1200 per year for six years, increasing by 200 per year thereafter. The money is worth 10% per year. No salvage value. Recommend which machine should be purchased.

P15IP73

8 a. Illustrate the uses of dummy activity in a network.
b. Project predecessor and duration is given.

Job	A	B	C	D	E	F	G	H	I	J	K
Predecessor	-	A	B	C	B	E	D,F	E	H	G,I	J
Day	13	8	10	9	11	10	8	6	7	14	18

i) Draw the network \quad ii) Find critical path
iii) Compute ES, EF, LS, LF, TF, FF

UNIT-V

9 a. Discuss the customer behavior and server behavior in a Queuing system.
b. Explain Kendall's notation.
c. In a super market, the average arrival rate of customer is 10 every 30 minutes following Poisson process. The average time taken by a cashier to list and calculate the customer's purchase is 2.5 minutes following exponential distribution. Find the probability that the queue length exceeds 6 ?

10a. Two players, A and B match coins. If the coins match, then A wins two units of value if do not match them B wins two units of value. Formulate the matrix and find the value of game and strategies.
b. Explain dominance rule.
c. Solve the game using dominance rule;

Player B				
Player A A		B1	B2	B3
	A1	3	-2	4
	A2	-1	4	2
	A3	2	2	6

