

The triangle ABC does not have two equal angles.

 \therefore ABC does not have two equal sides.

P1	5CS34 Page No 2						
c.	Convert the following statement to symbolic form and also write its negation:	6					
	"For all x, if x is odd, then x^2-1 is even".	6					
4 a.	Using the laws of logic, simplify the given statement $(p \rightarrow q) \land [\neg q \land (r \lor \neg q)]$.	6					
b.	Establish the validity of the following argument:						
	$p \wedge q$						
	$p \rightarrow (r \land q)$						
	$r \rightarrow (s \lor t)$	8					
	\neg S						

∴t

c. Prove that the following argument is valid where in c is specified element of the universe.

 $\forall x[p(x) \to q(x)]$ $\forall x[q(x) \to r(x)]$ $\neg r(c)$ 6

 $\therefore \neg p(c)$

UNIT - III

5 a. Prove by mathematical induction that $1^2 + 3^2 + 5^2 + - - - + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$. 6

- b. A sequence $\{c_n\}$ is defined recursively by $c_n = 3c_{n-1} 2c_{n-2}$ for all $n \ge 3$ with $C_1 = 5$ and $C_2 = 3$ as initial conditions. Show that $c_n = -2^n + 7$.
- c. If $A = \{1, 2, 3, 4\}, B = \{2, 5\}, C = \{3, 4, 7\}$

Determine AXB, BXA, $A \cup (BXC)$, $(A \cup B)XC$, $(AXC) \cup (BXC)$.

6 a. i) For $n \ge 2$ any sets $A_1, A_2, ----A_n \in U$

Prove that $\overline{A_1 \cup A_2 - \cdots - \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}$.

- ii) The Fibonacci numbers are defined recursively by $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1}+F_{n-2}$ for $n \ge 2$. Evaluate F_2 , F_5 , and F_7 .
- b. Define permutation function, hashing function and characteristic function.

c. i) Let f, g: $R \rightarrow R$ where $g(x) = 1 - x + x^2$ and f(x) = ax + b. If $gof(x) = 9x^2 - 9x + 3$, determine a, b.

ii) Given
$$p = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{bmatrix}$$
. Compute p^{-1}, p^2 .

UNIT - IV

- 7 a. Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (3, 1), (3, 3), (1, 3), (4, 1), (4, 4)\}$ be a relation on A. Is R is an equivalence relation?
 - b. Draw Hasse diagram for divisors of 36.
 - c. Let A = {1, 2, 3, 4, 6} and *R* be a relation defined by *aRb* if and only if *a* is multiple of *b*.Represent the relation *R* as matrix and draw its digraph.

6

8

7

7

6

8

6

P15CS34

Page No... 3

8 a. Consider the following relation on set $A = \{1, 2, 3\}, R_1 = \{(1, 1), (1, 2), (1, 3), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$. Which of these are;

- i) Reflexive ii) Symmetric iii) Transitive iv) Anti symmetric
- b. The digraph for a relation on the set $A = \{1, 2, 3, 4\}$ is shown in Fig. 8(b).
 - i) Verify that (A, R) is a Poset and find its Hasse diagram ii) Topological sort (A, R)

- c. For the posets shown in the following Fig.8(c) find:
 - i) All upper bounds

ii) L \cup B and GLB of the set $B = \{3, 4, 5\}$

Define cyclic group and show that (G, *) whose multiplication table is given is cyclic. 9 a.

*	а	b	c	d	e	f
а	а	b	с	d	e	f
b	b	c	d	e	f	а
c	с	d	e	f	a	b
d	b c d	e	f	a	b	c
e	e	f	а	b	с	d
f	f	a	b	с	d	e

b. Explain Lagragis theorem. If G is a group of order n and $a \in G$, prove that $a^n = e$.

c. Define the following terms with respect to coding theory:

i) Parity checkcode ii) Hamming distance iii) Group code iv) Generator matrix

The parity-check matrix for an encoding function $Z_2^3 \rightarrow Z_2^6$ is given by 10 a.

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

i) Determine associated gennerator matrix

ii) Does this code correct all single error in transmission

Let G is a group and $a, b \in G$, prove that b.

$$i) (a^{-1})^{-1} = a$$
 $ii) (ab)^{-1} = b^{-1} a^{-1}$ 6

Define Sub group. If H, K are sub group of G, prove that $H \wedge K$ is also subgroup. с.

6

6

8

6

8

6

8