P15CS36 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401
(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering **Semester End Examination; March - 2021**

Computer Organization

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

	UNIT - I						
1 a.	1 a. Define addressing modes. Explain any four types of addressing modes.						
b.							
	perform addition and subtraction on each pair. Indicate whether overflow occur or not in	10					
	each case; i) 7 and 13 ii) –12 and 9.						
2 a.	Construct sequence of instructions to perform the PUSH and POP operations in stack.	8					
b.	b. Explain Big Endian and Little Endian assignments.						
c.							
	UNIT - II						
3 a.	Illustrate how PC and link register are affected by the call and return instructions	1.0					
	in subroutine?	10					
b.	b. Explain boot-strapping process.						
c.	c. Examine the concept of enabling and disabling of interrupts with example.						
4 a.	a. Describe how operating system manages the execution of multiple application programs?						
b.	Explain the use of interrupts in operating system.	10					
	UNIT - III						
5 a.	What is Instructions Cycle (IC)? Explain generation of the hardware control signals						
	with neat diagram.	10					
b.	b. Explain Universal Serial Bus with neat block diagram.						
6 a.	Demonstrate the following with required diagram:						
	i) Handshake control of data transfer during an input operation						
	ii) Handshake control of data transfer during an output operation						
b.	Design I/O interface for an input device with explanation.	7					
	UNIT - IV						
7 a.	Organize 1K×1 memory chip. Outline the details.	10					
b.	When page faults occur? Explain virtual memory address translation with a neat diagram.						
8 a.	8 a. Explain the following memory mapping with a neat block diagram:						
	i) Direct mapping ii) Associative mapping iii) Set Associative mapping	17					

P15CS36 Page No... 2 b. Calculate the number of bits in each of the Tag, Set and Word fields of the memory address from the following: A computer system uses 32-bit memory address and it has a main memory consisting of 3 1 GB. It has a 4 K byte each organized in the block set associative manner, with 4 block per set and 64 bytes per blocks. UNIT - V 9 a. Convert the following decimal number to binary number: 6 $(927.45)_{10}$. b. Construct Booth's algorithm. Multiply (+13, -6). [5-bit representation] 10 Booth's algorithm. Distinguish between multiplication multiplication of signed numbers and of 4 unsigned numbers. 10 a. Explain IEEE basic format for 32-bit representation. Show the IEEE basic format for following floating points using single precision: 10 $1.00101000110011110011000 \times 2^{-87}$

* * *

5

5

Solve and perform 1000%11 using restoring division method.

What is bit-pair recoding of multiplier? Explain its benefits with an example.