

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3x10^8 \text{ ms}^{-1}$; Planck's constant, $h = 6.626x10^{-34} \text{ Js}$; Boltzmann constant, $K = 1.38x10^{-23} \text{ JK}^{-1}$; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm⁻¹.

UNIT - I

Derive Euler's equation of motion along a stream line. 8 1 a. 5 Write a note on mechanical energy and efficiency of fluids. b. Derive an expression for internal field in case of solid dielectric. 7 c. Explain the working principle of atomizer in spraying of water into air. 7 2 a. Describe in brief the various types of polarization. 8 b. A parallel plate capacitor area 650 mm² and a plate separation of 4 mm has a charge of c. 2×10^{-10} C on it. What is the resultant voltage across the capacitor when a material of dielectric 5 constant 3.5 is introduced between the plates?

UNIT - II

3 a.	Explain the distribution of energy in blackbody radiation spectrum. Mention the limitations of	8		
	Wien's and Rayleigh - Jeans law.	0		
b.	Derive an expression for deBroglie wavelength in from of group velocity concept.	7		
c.	An electron is bound in one dimensional infinite potential well of width 1Å. Find its energy	5		
	values in the ground state and also in the 1 st two excited states.	5		
4 a.	State Heisenberg's uncertainty principle and show that electron doesn't exist inside the nucleus	8		
	of an atom.	0		
b.	Set up time independent one dimensional Schrodinger wave equation.	7		
c.	If an electron has a de-Broglie wavelength of 2 nm, find its kinetic energy and group velocity.	5		
	Given that it has rest mass energy of 511 keV.	5		
UNIT - III				
5 a.	Mention the successes of classical free electron theory and explain how quantum free electron	8		
	theory overcomes the failures of classical free electron theory?			
b.	Discuss the variation of Fermi factor on different conditions of temperature and energy.	8		
c.	An electron concentration in an N-type semiconductor is 5×10^{17} m ⁻³ . Calculate the			

conductivity of material, if the drift velocity of an electron is 350 m/s in an electric field of 4 1000 V/m.

	P15PH12/22 Page No 2			
6 a	Define law of mass action. Deduce the relation between Fermi energy and energy gap for an	8		
	intrinsic semiconductor.	0		
b	Derive the expression for electrical conductivity of an intrinsic semiconductor.	7		
c	Calculate the Fermi energy in eV for a metal at 0 K, whose density is 10500 kg/m ³ , atomic			
	weight 107.9 and it has 1 conduction electron per atom. Given 1 J = 6.24×10^{18} eV and	5		
	$N_A = 6.025 \times 10^{26} / k$ mole.			
UNIT - IV				
7 a.	Describe how BCS theory explains superconductivity?	7		
b	Discuss the variation of density of states for different quantum structures.	8		
C.	Mention the applications of Nanomaterials.	5		
8 a.	Describe Type-I and Type-II superconductors.	8		
b	Explain the working principle of Scanning Tunneling Microscope with the help of a neat	7		
	diagram.	1		
c	A superconducting tin has a critical field of 306 gauss at 0 K (H_0) and 217 gauss (H_c)	5		
	at 2 K. Find the critical temperature of superconducting tin.	5		
	UNIT - V			
9 a	Obtain an expression for energy density of radiation under equilibrium condition in terms	5		
	of Einstein coefficients.	U		
b	Discus single mode and graded index optical fiber mode with suitable diagram.	5		
C.	Discus how the velocity of ultrasonics in liquids can be measured.	5		
d	A volume of the hall is 475 m^3 . The area of wall is 200 m^2 , area of floor and ceiling each of			
	100 m^2 . If absorption coefficients of the wall, ceiling and floor are 0.025, 0.02 and 0.55	5		
	respectively, calculate the reverberation time for the hall.			
10 a	Discus the conditions required for laser action.	5		
b	The acceptance angle of optical fiber is 30° when kept in air. Find the angle of acceptance,	5		
	when it is in a medium of refractive index 1.33.	-		
C.	Explain with a neat diagram how a flaw in solid material is detected by non-destructive	5		
	method of testing using ultrasonics?	-		
d		5		
	determined?	-		

* * * *