P17CS33 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Computer Science and Engineering
Semester End Examination; March - 2021
Data Structures

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Design and Implement standard data structures like stack using recursion.
- CO2: Design and implement operations on linked list.
- CO3: Develop programs to implement different queues.
- CO4: Design and implement different tree traversal techniques using iteration and recursion.
- CO5: Implement sorting and searching techniques.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

11) 171K1 - B. Thiswer any <u>1wo</u> sub-questions (from a, b, e) for maximum of 10 marks from each and.								
Q. No.	Questions	Marks	BLs	COs	POs			
	I : PART - A	10						
I a.	Write a C program to display the elements of an array using pointers.	2	L2	CO1	PO1			
b.	Differentiate malloc() and calloc().	2	L2	CO2	PO1			
c.	List the advantages and disadvantages of linked list over arrays.	2	L1	CO3	PO1			
d.	Define the following:	2	т 1	CO4	DO1			
	i) Complete binary tree ii) Almost complete binary tree	2	L1	CO4	PO1			
e.	Apply Radix sort to arrange the following numbers in ascending order:	2	т 2	005	DO1			
	20, 84, 43, 45, 36, 62, 57, 79, 28, 84.	2	L3	CO5	PO1			
	II : PART - B	90						
	UNIT - I	18						
1 a.	Explain the concept of pointers as function arguments. Write a program							
	to find maximum of two elements using pointer and function. The	9	L2,4	CO1	PO3,1			
	function should return the maximum.							
b.	List the applications of stacks. Using stack, write a C program to							
	determine, if a given string is palindrome or not and print the suitable	9	L2,4	CO1	PO3,1			
	message as output.							
c.	i) Write an algorithm for converting infix expression to postfix							
	expression.							
	ii) Given the following expression, give their postfix and prefix form:	9	L3,4	CO1	PO1,2,3			
	I) I) $(A+B)*(D.C)$ II) $X Y*Z-M+N+P/Q/(R+S)$							

D17.0	1822		Page No 2		
P17CS33			Page	3 NO 2	
	UNIT - II	18			
2 a.	With suitable example, explain the advantages of circular queues over				
	linear queues. Write a C routine for;	9	L2,4	CO2 PO1,3	
	i) Inserting an element into circular queues				
	ii) Display the content of circular queues				
b.	Define Recursion. Write a C function for the following:				
	i) Sum of <i>N</i> integer's	9	L2,4	CO2 PO1,2,3	
	ii) Tower of Hanoi problem				
c.	With suitable example and C routines, explain the operations Insert-Front	0	τ.ο	CO2 PO1 2	
	and Delete-Rear of a double ended queue.	9	L2	CO2 PO1,3	
	UNIT - III	18			
3 a.	Explain the various dynamic memory allocation functions in detail.	9	L2	CO3 PO1	
b.	Using the header node concept, write a C program to implement stacks	0	1.6	CO2 PO1 2	
	using circular linked list.	9	L6	CO3 PO1,2	
c.	Write C routines to;				
	i) Concatenate two singly linked list				
	ii) Delete a node whose position is specified in a given doubly	9	L3	CO3 PO2,3	
	linked list				
	UNIT - IV	18			
4 a.	Write recursive C routines to implement various tree traversal techniques				
	for the tree in Fig.4 (a). Obtain inorder, preorder and postorder traversal.				
	⊕				
		9	L6	CO4 PO1,2	
	(*) (D)				
	Ø È				
	G C Gig. H(a)				
b.	Explain Binary Search Tree with an example. Write a recursive algorithm				
	to search for an item in a given Binary Search Tree.	9	L4,3	CO4 PO1,2	
c.	Explain Threaded Binary Tree in detail.	9	L2	CO4 PO1	
	UNIT - V	18			
5 a.	Write a C program to sort the given elements in ascending order using	0	τ	CO5 DO1 2 2	
	binary tree sort method.	9	L6	CO5 PO1,2,3	
b.	Write a C program to sort the given element in descending order using	0	Ι. (CO5 PO1 2 2	

Radix sort method.

c. Explain ordered list search with an algorithm

CO5 PO1,2,3

L4 CO5 PO1,2