

UNIT - III

5 a. Distinguish between;

- i) Steady flow and Unsteady flow
- ii) Uniform flow and Non uniform flow
- iii) Compressible flow and Incompressible flow

6

	P15ME33 Page No 2	
b.	The following case represent the two velocity components determine the third component of	4
	velocity such that they satisfy the continuity equation $v = 2y^2$ $w = 2xyz$.	4
c.	If for a two-dimensioal potential flow, the velocity potential is given by $\phi = x(2y - 1)$, determine	10
	the velocity at the point $P(4, 5)$. Determine also the value of stream function ϕ at the point P .	10
6 a.	What are the assumptions made in deriving the Euler's equation of motion? Derive the Euler's	10
	equation of motion and obtain the Bernoulli's equation.	10
b.	What is a venturi meter? Derive an expression for the discharge through a venturi meter.	10
UNIT - IV		
7 a.	Define; i) Displacement thickness ii) Momentum thickness.	4
b.	Derive an expression for Displacement thickness.	6
c.	Find the displacement thickness, the momentum thickness and energy thickness for the velocity	
	distribution in the boundary layer given by,	
	$\frac{u}{v} = \frac{y}{\delta}$ where <i>u</i> is the velocity at a distance <i>y</i> from the plate and	10
	$u = v$ at $y = \delta$ (the boundary layer thickness)	
8 a.	Derive an expression for the loss of head due to friction in a pipe (Darcy-Weisbach equation).	10
b.	Water is flow through a pipe of diameter 20 cm with a velocity of 3 m/s. Find the loss of head due	
	to friction for a length of 5 m if the coefficient of friction is given by,	
	$f = 0.02 + \frac{0.09}{R_e^{0.3}}$ Where R_e is the Reynold's number.	10
	The Kinematic viscosity of water is given by 0.01 stoke.	
UNIT - V		
9 a.	Prove that the maximum velocity in a circular pipe for a viscous flow is equal to the two times the	10
	avarage velocity of flow	10

b. An oil of viscocit 0.1 N s/m² and specific gravity 0.9 is flowing through a circular pipe of diameter 5 cm and length 300 m. The rate of flow through the pipe is 3.5 l/s. Find the pressure 10 drop in a length of 300 m and also the shear stress at the pipe wall.

average velocity of flow.

- 10 a. Using Rayleigh's method find an expression for drag force 'F'on a smooth sphere of diameter
 D'moving with a uniform velocity 'V'in a fluid of density 'ρ'and dynamic viscosity'μ'.
 - b. The pressure diffrence ' ΔP ' in a pipe of diameter 'D' and length 'L' due to the viscous flow depends on the velocity 'V', viscosity ' μ ' and density ' ρ '.using Buckingham's II theorem 10 prove that $\Delta P = \frac{\mu v}{D} \phi \left(\frac{L}{D}, \frac{\rho D V}{\mu}\right)$

* * *