U.S.N						Ì

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Jan. / Feb. - 2021 Digital Image Processing

Time: 3 hrs Max. Marks: 100 *Note*: Answer *FIVE* full questions, selecting *ONE* full question from each unit. What is a digital Image? Explain the fundamental steps of digital image processing. 8 1 a. Explain the concept of sampling and quantization. 8 Explain different types of representing digital images. 4 Explain with neat diagram, how image is acquired using sensor strips? 2 a. 8 With a neat diagram, explain the components of a general purpose image processing system. 8 c. Transmission is accomplished in a packet consisting of a start bit, a byte of information and a stop bit. Find out; i) How many minutes would it take to transmit a 2048 × 2048 image with 256 intensity level 4 using a 33.6 k baud modem? i) What would the time be at 3000 k baud? UNIT - II 3 a. With necessary graph, explain the log and power law transformation used for spatial 5 image enhancement. 5 Explain Grey level and Bit plane slicing along with relevant transformation. c. Perform histogram equalization of the given image. The grey level value range between 0 to 7. 3 4 5 4 3 3 5 5 5 3 3 4 5 4 3 10 4 a. Explain smoothing of images in frequency domain using ideal Butterworth LPF and Gaussian 6 LPF (Low Pass Filter). b. Explain homomorphic filtering approach for image enhancement. 8 c. For the image segment f(x, y) given below, apply; i) Smoothing filter 6 ii) Weighted average filter

iii) Median filter

UNIT - III

5 a.	With a neat diagram, explain the model of the image degradation / restoration process.									6	
b.	Discuss the follow	wing no	oise mod	lels alon	g with e	xpressio	n and re	sponse	curve:		
	i) Rayleigh										o
	ii) Erlang									8	
	iii) Salt and Pepp	per									
c.	What are order static filters? Explain any three order filter.										6
6 a.	Define and write expression for the following filters:										
	i) Geometric mean										6
	ii) Harmonic mean										6
	Mention one appl	ication	of each	•							
b.	Describe the adaptive median filtering with necessary equation.										8
c.	Define and obt	ain tra	insfer f	unction	of per	riodic n	oise re	duction	band	reject filter in	6
	frequency domain	1.									O
					UNIT	- IV					
7 a.	. What is objective of segmentation? Explain region based segmentation.									10	
b.	Explain derivative type of edge detection operations.										10
8 a.	Explain erosion and dilation operation used for morphologic processing.									10	
b.	e. Explain the following morphological algorithms:									10	
	i) Thinning		ii) Thic	kening							10
					UNIT	Γ - V					
9 a.	Suppose RGB c	olour t	triplet f	or a pa	articular	colour	is give	n by (0.3, 0.5	5, 0.2), compute	10
	corresponding YI	Q and 1	HSI trip	lets.							10
b.	Explain pseudo c	olor in	nage pro	cessing	with int	ensity sl	icing te	chniqu	e and g	rey level to color	10
	transformation.										10
10 a.	Explain image co	mpress	ion mod	lel with	a block o	diagram.					10
b.	Consider a 8-bit i	mage,									
		21	21	21	95	169	243	243	243		
		21	21	21	95	169	243	243	243		
		21	21	21	95	169	243	243	243		
		21	21	21	95	169	243	243	243		10

- i) Find entropy of the image
- ii) Compress the image using Huffman coding
- iii) Compute the compression achieved
- iv) Code the difference between adjacent pixels