

- b. What is Primitive network? Obtain the performance equation in both admittance form impedance form.
- c. Consider three passive elements whose data is given below. Form the primitive impedance matrix and primitive admittance matrix.

Element	Self impedance	Mutual impedance
1	j0.6	-
2	j0.5	j0.2 (with element1)
3	j0.7	-

UNIT - II

3 a. Determine Y_{bus} by singular transformation for the system with as below:

Element No.	1	2	3	4	5
Bus code $p - q$	0 – 1	1 - 2	2 - 3	3 – 0	2 - 0
Self admittance	1.4	1.6	2.4	2.0	1.8

b. Derive an expression for the bus admittance matrix Y_{bus} using singular transformation method.

6

6

6

8

P17EE71

R Χ Line 1 - 20.05 0.15 1 - 30.1 0.3 0.15 2 - 30.45 2 - 40.1 0.3 3 - 40.05 0.15

The single line diagram of a four bus system is shown in Fig. 3(c). The data is given in the c. table. Formulate Y_{bus} without line 1 - 2. If line 1 - 2 is added, show how Y_{bus} is modified?

Derive the expression for addition of a link to the partial network using building algorithm with 4 a. 10 no mutual coupling.

b. Obtain Z_{bus} by building algorithm for the system shown in Fig. 4(b). All the impedances are in p.u. Add the elements in the order specified.

UNIT - III

- Explain how buses are classified in a power system to perform load flow analysis? 5 a.
 - Obtain the voltage at bus 2 for the system shown in Fig. 5(b) using G-S method, b. 8 if $V_1 = 1 \angle 0^\circ p . u$.
 - c. Compare the load flow methods with respect to storage requirements, computation time or iteration and number of iterations.
- Derive the expression for the diagonal elements of sub matrices of the Jacobian in Newton 6 a. Raphson method of load flow analysis.
 - b. Obtain the voltages at all buses for three bus system shown in Fig. 6(b) at the end of first iteration by N-R method. The data is given in the table below,

Line data	SB	EB	R(Pu)	X(Pu)	Bc/2	
	1	2	0.0	0.1	0.0	
	1	3	0.0	0.2	0.0	
	2	3	0.0	0.2	0.0	
Bus data	Bus no.	P_G	Q_G	P_D	Q_D	V_{sp}
	1(slack)	-	-	-	-	1.0
	2(PV)	5.3217	-	-	-	1.1
	3(PQ)	-	-	3.6392	0.5339	_

UNIT - IV

- 7 a. Derive the necessary condition for economic operation of generators neglecting transmission losses.
- The fuel costs in Rs/hr for two plants are $F_1 = 0.004 p_1^2 + 8p_1 + 10$; $F_2 = 0.006 + P_2^2 + 9P_2 + 15$. b.

The system is operating on economic load dispatch with $P_1 = P_2 = 500$ MW and $\frac{\partial P_L}{\partial P_2} = 0.2$.

Find penalty factor of plant1.

Contd...3

12

6

6

6

10

6

6

8

P17EE71

- c. Obtain the expression for B coefficient considering two plant systems.
- 8 a. Compute the loss coefficients for the network shown in Fig. 8(a) using the given data;
 - $I_{a} = (1.0 j0.15)p.u. \qquad Z_{a} = (0.02 + j0.15)p.u. \qquad 8$ $I_{b} = (0.5 - j0.1)p.u. \qquad Z_{b} = (0.03 + j0.05)p.u. \qquad 8$ $I_{c} = (0.2 - j0.05)p.u. \qquad Z_{c} = (0.02 + j0.25)p.u. \qquad 8$
 - b. Explain the performance curves of thermal plant.
 - c. The fuel cost of two generating plants are given below;

$$F_1 = 1.5 + 20P_{G1} + 0.1P_{G1}^2 Rs/h$$
 $F_2 = 1.9 + 30P_{G2} + 0.1P_{G2}^2 Rs/h.$

Find the optimal schedule for the demand $P_D = 200$ MW. Also find the savings per day when they share the load equally.

UNIT - V

- 9 a. Explain with necessary condition the solution of swing equation by point- by-point method. 10
- b. With necessary equation, describe the solution of swing equation using modified Euler's method.
- 10 a. Explain with Phasor diagrams and necessary expression. The synchronous machine Models employed in transient stability studies.
 - b. Describe the solution of swing equation using RK method.

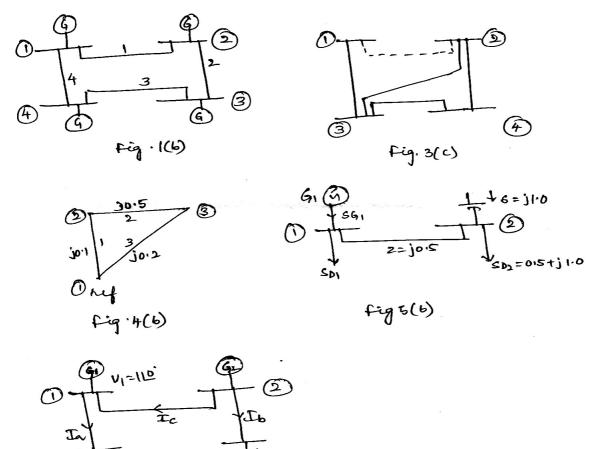


fig. 8(a)

8

4

8

10