U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Industrial and Production Engineering Semester End Examination; March - 2021 Fluid Mechanics and Machinery

Time: 3 hrs Max. Marks: 100

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

	FART - B. Answer any <u>Iwo</u> sub questions (from a, b, c) for Maximum of 18 marks from each ar						
Q. No.	Questions	Marks					
	I : PART - A	10					
I a.	Define the following:	2					
	i) Specific volume ii) Specific weight	2					
b.	Explain the terms 'meta-centre' and 'meta-centric height'.						
c.	Differentiate between Rotational and Irrotational flow.						
d.	List any four minor energy losses that occur in flow through pipe.						
e.	Give the classification of Reciprocating pumps.						
	II : PART - B	90					
	UNIT - I	18					
1 a.	Explain the phenomenon of capillarity. Obtain an expression for capillary rise and	9					
	fall of a liquid.	9					
b.	Derive an expression for vertical single column manometer.						
c.	Find the kinematic viscosity of an oil having density 981 kg/m ³ . The shear stress at						
	a point in oil is 0.2452 N/m ² and velocity gradient at that point is 0.2 per second.						
UNIT - II							
2 a.	Obtain an expression for the total pressure and centre of pressure on vertical plane						
	when it is submerged in the liquid.	9					
b.	With neat sketches, explain the conditions of equilibrium for floating and submerged	0					
	bodies	9					
c.	Determine the total pressure and centre of pressure of an isosceles triangular plate of						
	base 4m and altitude 4m when it is immersed vertically in an oil of specific gravity	9					
	0.9. The base pf the plate coincides with the free surface of oil.						
	UNIT - III	18					
3 a.	Briefly explain the following types of fluid flow:						
	i) Steady and unsteady flow	0					
	ii) Compressible and incompressible flow	9					
	iii) Laminar and turbulent flow						

Page No... 2 P17IP35 b. What is venturimeter? Derive an expression for the discharge through a venturimeter 9 c. The water is flowing through a pipe having diameter 20 cm and 10 cm at sections 1 and 2 respectively. The rate of flow through pipe is 35 litres/s. The section 1 is 6 m 9 above datum section 2 is 4 m above datum. If the pressure at section 1 is 39.24 N/cm², find the intensity of pressure at sec 2. UNIT - IV 18 4 a. How will you determine the loss of head due to friction by using? i) Darcy Weisbach 9 ii) Chezy's formulae 9 b. Define hydraulic turbine. Briefly explain the classification of hydraulic turbines. c. A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 rpm. The net head on the Pelton wheel is 700 m. If the side clearance angle is 15° and discharge through nozzle is 0.1 m³/s, find; 9 i) Power available at the nozzle ii) Hydraulic efficiency of the turbine UNIT - V 18 What is an air vessel? Describe the function of the air vessel for reciprocating Pumps. 9 b. Differentiate between centrifugal pumps and reciprocating pumps. 9 c. A centrifugal pump delivers water against a net head of 14.5 meters and a design speed of 1000 rpm. The vanes are curved back to an angle of 30° with the periphery. 9 The impeller diameter is 300 mm and outlet width is 50 mm. Determine the discharge of the pump if monomeric efficiency is 95%.