

2 a.	Define parameter nesting. Write the RISC program using subroutine with parameter	0		
passing to add sum of three numbers and store the result in sum memory locations.				
b.	Define Interrupt. Explain the working of Interrupt.	9		

c. Produce the value of Register R_0 after executing the instructions given below with carry flag given the initial value of C = 1 and $R_0 = 10110110$

i) LShiftL #3, R_0	ii) LShift R #3, R_0	iii) RotateL #3, R_0
iv) RotateLC #3, R_0	v) RotateR #3, R_0	vi) RotateRC #3, R_0

9

P17IS35				
	UNIT - III	18		
3 a.	Produce and explain the sequence of action needed to fetch and execute the instruction	: 9		
	Branchif[R3] \neq [R7] Loop.	9		
b.	Explain the main hardware components of a processor used for execution of instruction	n. 9		
c.	Produce the sequence of actions needed to fetch and execute the instruction;	9		
	SUB R6, R7, #5.	9		
UNIT - IV 1				
4 a.	With neat schematic representation, explain a synchronous DRAM.	9		
b.	Illustrate how a static RAM cell is implemented with its read and write operations.	9		
c.	Explain and design the organization of memory chip consisting of 8-word / 4-bits each	. 9		
	UNIT - V	18		
5 a.	Explain the different processor architectures.	9		
b.	Apply Booth and Bit pair recording algorithms to find the product of two 6	-bit		
	multiplicand and multiplier. Where multiplicand = 110101 and multiplier = 011011 .	9		
c.	Apply restoring division algorithm for the number 43/9.	9		

* * *