
	P15ME754 Page No 1	
	U.S.N	
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E Mechanical Engineering Semester End Examination; Dec 2019	
	Finite Element Method in Engineering Time: 3 hrs Max. Marks: 100	
	Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Missing data, if any, may be suitably assumed. UNIT - I	
1 a.	List the engineering applications of Finite Element Method.	5
b.	Briefly explain the steps involved in Finite Element Method.	7
c.	Explain briefly with respect to discretization process;	
	i) Size of Elements	8
	ii) Node numbering scheme	
2 a.	Define Body force and Traction force and give any two examples for each.	4
b.	Explain the concept of plane stress and plane strain problems and write their stress strain relation.	8
c.	State the principle of minimum potential energy and derive the expression for total potential energy of a 3-D elastic body.	8
	UNIT - II	
3 a.	List and explain different coordinate systems used in Finite Element Method.	8
b.	Derive shape functions for a 3-noded triangular element in terms of Cartesian coordinate systems.	8
c.	The nodal co-ordinates of a 3-noded triangular element at nodes 1, 2 and 3 are (1, 1), (4, 1) and	
	(1, 5) respectively. Evaluate the shape functions at point P whose coordinates are	4
1.0	given by (2, 3).	
4 a.	Derive shape functions for a 4-noded quadrilateral element using Lagrangian interpolation function.	10
b.	With necessary sketches, explain the concept of ISO, sub and super parametric elements.	10
	UNIT - III	
5 a.	Derive strain-displacement matrix-B and stress matrix for a 3-noded triangular element.	10
b.	Derive stiffness matrix for a 2-noded bar element.	10
6.	Fig. Q(6) shows a thin steel plate with Young's modulus $E = 200$ GPa and weight density	
	$\rho = 76.6 \times 10^{-6}$ N/mm ³ . In addition to its self weight the plate is subjected to a point load at its midpoint.	20


- i) Write down the expressions for the element stiffness matrices and element body force vectors
- ii) Assemble the structural stiffness matrix K and global load vector F
- iii) Using the elimination approach, solve for the global displacement vector Q
- iv) Evaluate the stresses in each element
- v) Determine the reaction force at the support

UNIT - IV

- 7 a. Write the assumptions made during the Finite Element analysis of truss structures.
- b. For the two bar truss structures shown in Fig. 7(b), determine the following:
 - i) Element stiffness matrices
 - ii) Support reactions at each support
 - iii) Stresses in each element or bar

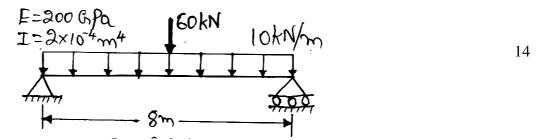
- 8 a. Derive element stiffness matrix for a truss element.
 - b. Determine the unknown displacements for the structure shown in Fig. 8(b), $E = 0.7 \times 10^5$ MPa and A = 200 mm².

8

12

4

16


P15ME754

UNIT - V

6

6

- 9 a. For a beam element, derive an expression for load vector due to uniformly distributed load.
 - b. For the beam shown in Fig. 9(b), determine the nodal displacement and slopes.

- 10 a. Briefly explian the different boundary conditions used in steady state heat trnasfer problems.
 - b. A composite wall consists of three mateials as shown in Fig. 10(b). The outer temperature is $T_0 = 20^{\circ}$ C. Convection heat transfer takes place on the inner surface of the wall with $T_{\infty} = 800^{\circ}$ C and $h = 25 \text{ W/m}^{2\circ}$ C. Determine the temperature distribution in the wall.

$$K_{1} = 20C$$

$$K_{1} = 20W/m^{2}C$$

$$K_{2} = 30W/m^{2}C$$

$$K_{3} = 50W/m^{2}C$$

$$h = 25W/m^{2}C$$

$$T_{10} = 800^{2}C$$

$$T_{10} = 800^{2}C$$

* * *