\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Civil Engineering
Semester End Examination; Dec. - 2019
Fluid Mechanics
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Questions

Marks
I : PART - A
I a. Define Weight density and Relative density. 2
b. Define Pressure and Pressure head.
c. Define Discharge. Express in different ways.2
d. What is an equivalent pipe? 2
e. Define Venacontracta.

II : PART - B

UNIT - I
1 a. Calculate specific weight, mass density, specific volume and specific gravity of a liquid having a volume of 4000 liters and weighing 29.43 kN . Assume missing data suitably.
b. A plate having an area of $1 \mathrm{~m}^{2}$ is dragged down an inclined plane at 45° to horizontal with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$ due to its own weight. There is a cushion of liquid 1 mm thick between the inclined plane and the plate. If viscosity of oil is $0.1 \mathrm{~Pa}-\mathrm{s}$, determine the weight of the plate.
c. Differentiate between;
i) Ideal fluid and Real fluid
ii) Compressible fluid and Incompressible fluid
iii) Viscosity and Kinematic viscosity

Which fluids you prefer for the analysis of motion of fluids?

UNIT - II

2 a. Show that the center of pressure always lies below the centroid of a plane surface immersed vertically in fluid at rest.
b. Determine the pressure difference between A and B of Fig. 2B, if $d_{1}=300 \mathrm{~mm}$, $d_{2}=150 \mathrm{~mm}, \mathrm{~d}_{3}=460 \mathrm{~mm}, \mathrm{~d}_{4}=200 \mathrm{~mm}$. The liquid used in the manometer is mercury.

c. Calculate the resultant water pressure on a tainter gate of radius 8 m and width unity as shown in Fig. 2C

UNIT - III
Fig. 2C

3 a. Define potential function and stream function. Show that the stream lines and equipotential lines meet orthogonally.
b. A stream function in a two dimensional flow is $\psi=2 x y$ show that the flow is irrotational and determine the corresponding velocity potential.
c. A horizontal Venturimeter with inlet diameter 200 mm and throat diameter 100 mm is used to measure the flow of oil of specific gravity 0.8 . The discharge of oil through venturimeter is 60 lps . Determine the reading of the oil-mercury differential manometer. Take; $\mathrm{c}_{\mathrm{d}}=0.98$.

UNIT - IV
4 a. Explain;
i) Pipes in series
ii) Pipes in parallel
iii) Water hammer in pipes
b. The rate of flow of water through a horizontal pipe is 350 lps . The diameter of the pipe is suddenly enlarged from 200 mm to 500 mm . The pressure intensity in the smaller pipe is $0.15 \mathrm{~N} / \mathrm{mm}^{2}$. Determine;
i) Loss of head due sudden enlargement
ii) Pressure intensity in the larger pipe
iii) Power lost due to enlargement
c. Two reservoirs are connected by a 3 km long 250 mm diameter pipe. The difference in water levels of two reservoirs being 10 m . Calculate the discharge in lpm, if friction factor $=0.03$. Also find the percentage increase in discharge, if a second pipe of same diameter is laid parallel to the first for the last 600 m .

UNIT - V
5 a . Define hydraulic coefficients. Give the relationship between them.
b. Differentiate a suppressed weir from a contracted weir. Why the ventilation of suppressed weirs is necessary?
c. A rectangular channel 6 m wide carries a flow of $1.5 \mathrm{~m}^{3} / \mathrm{s}$. A rectangular sharp crested weir is to be installed near the end of the channel to create a depth of 1 m upstream of the weir. Calculate the necessary height. Assume $c_{d}=0.62$

