

10100100

The Students will be able to:

Course Outcomes

- CO1: Apply forward, backward difference formulae and central differences formulae in solving interpolationextrapolation problems in engineering field.
- CO2: Numerical differentiation and integration rules in solving engineering where the handlings of numerical methods are inevitable.
- CO3: Apply the knowledge of periodic function, Fourier series, complex Fourier series, Fourier sine/cosine series of a function valid in different periods. Analyze engineering problems arising in control theory/fluid flow phenomena using harmonic analysis.
- CO4: Understand complex/infinite Fourier transforms Fourier sine and Fourier cosine transforms with related properties. Analyze the engineering problems arising in signals and systems, digital signal processing using Fourier transform techniques. Define Z-transforms& find Z-transforms of standard functions to solve the specific problems by using properties of Z-transforms. Identify and solve difference equations arising in engineering applications using inverse Z-transforms techniques.
- CO5: Define Partial Differential Equations (PDE's), order, degree and formation of PDE's and, to solve PDE's by various methods of solution. Explain one dimensional wave and heat equation and Laplace's equation and physical significance of their solutions to the problems selected from engineering field.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	o. Questions I : PART - A	Marks BLs COs POs 10							
I a.	Construct the Newton's Backward difference table for the data given below,								
	X 2 4 6 8	2 L1 CO1 PO1							
	Y 10 96 196 350								
b.	Write the first derivative Newton's forward formula up to third degree	. 2 L1 CO2 PO1							
c.	Evaluate: $\int e^{ax} \cos bx dx$.	2 L1 CO3 PO1							
d.	Define Z-Transform of u_{n} .	2 L1 CO4 PO1							
e.	Solve by direct integration $\frac{\partial^2 z}{\partial x \partial y} = \cos x \cos y.$	2 L1 CO4 PO1							
	II : PART - B	90							
	UNIT - I	18							
1 a	i) Define Extrapolation								

1 a. i) Define Extrapolation.

ii) A survey conducted in a slum locality reveals the following information as classified below.

Income per day (Rs.)	Under 10	10 - 20	20 - 30	30 - 40	40 - 50
Number of persons	20	45	115	210	115

9 L2 CO1 PO1

Estimate the probable number of person in the income group 20 to 25.

P17MA31

c.

2 a.

b.

c.

3 a.

b.

c.

4

у

8

15

7

6

- b. i) Write a Lagrange's inverse interpolation formula for x = f(y).
 - ii) The following table gives the normal weights of babies during first eight months of life.

monuis	Ji me.										
	Age (months	s)	0	2	5	8		9	L3 (CO1 PO1
	Weight	t (pound	ds)	6	10	12	16				
Estimate the weight of the baby at the age of seven months using Lagrange's											
interpola	ation forn	nula.									
i) Write Ga	uss's forv	ward int	terpolat	ion forr	nula up	to 4 th d	legree te	erms.			
ii) Use Stirling's formula to compute $u_{14,2}$ from the following:							9	L3 (CO1 PO2		
$u_{10}=0.$	240, u ₁₂ =	= 0.281,	$, u_{14} = 0$	0.318, u	$u_{16} = 0.3$	352, u ₁₈	= 0.384	4			
				UNIT -	II				18		
Find the maximum and minimum values of the function $y = f(x)$ from the								the			
following d	ata.										
	x	1	_	3	5	7	9		9	L1 (CO2 PO1
	у	9)	11	13	63	209				
i) Write the	Trapezoi	idal rule	e for <i>n</i> =	= 6.							
	-							0.6			
ii) Use Sim	pson's	$\left(\frac{1}{3}\right)$ rul	le to ob	otain the	e appro	ximate	value o	f $\int e^{-x^2} dx$	by 9	L3 (CO2 PO2
ii) Use Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule to obtain the approximate value of $\int_{0}^{0.6} e^{-x^2} dx$ by considering 6 equal strips.											
		-									
i) Write Bo	1										
ii) Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$, by Weddle's rule taking seven ordinates and hence find						ind 9	L3	CO2 PO2			
$log_e 2.$											
UNIT - III								18			
Obtain the Fourier series for the function $f(x) = x - x^2$ in $(-\pi, \pi)$ and hence							nce				
deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$						9	L3	CO3 PO2			
deduce that	$\frac{\pi}{12} = \frac{1}{1^2}$	$-\frac{1}{2^2}+\frac{1}{3}$	$\frac{1}{3^2}$	•••••							
i) Obtain th	e comple	x form	of the F	Fourier	series fo	or the fu	inction.				
$f(x) = \begin{cases} -k & \text{in } -\pi < x < 0\\ k & \text{in } 0 < x < \pi \end{cases}$											
$f(x) = \begin{cases} \\ \\ \end{cases}$	k in	0 < x <	π						9	L3 (CO3 PO2
ii) Expand	f(x) = 2.	x-1 as	the cost	ine half	range I	Fourier	series ir	x = 0 < x < 1.			
Express y	as a F	Fourier	series	up to	the	second	harmo	nic given	the		
following data.											
e	ata.								0	10	CO2 DO2
C	ata. x	0	1	2	3	4	5		9	L2	CO3 PO2

2

P17MA31

UNIT - IV

Page No... 3

18

9

L3 CO4 PO2

- 4 a. Find the Fourier Transform of $f(x) = \begin{cases} 1 |x| & \text{in } |x| \le 1 \\ 0 & \text{in } |x| > 1 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt.$
 - b. Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1-a & 0 \le \alpha \le 1 \\ 0 & \alpha > 1 \end{cases}$ and hence 9 L3 CO4 PO2
 - evaluate, $\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$.
 - c. i) Find the Z-transform of $(n+1)^2$.
 - ii) Solve by using Z-Transforms: $y_{n+1} + \frac{1}{4}y_n = \left(\frac{1}{4}\right)^n$, $y_0 = 0$.

UNIT - V 18

5 a. i) Form the Partial differential equation by eliminating the arbitrary constants

for
$$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
.
9 L1 CO4 PO1

ii) Form the Partial differential equation by eliminating the arbitrary function for $\varphi(xy+z^2, x+y+z)=0$.

- b. i) Define homogeneous partial differential equation. ii) Solve: $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$. 9 L3 CO4 PO2
- c. Obtain the various possible solutions of the two dimensional Laplace equations $u_{xx} + u_{yy} = 0$, by the method of separation of variables. 9 L3 CO4 PO2

* * *