

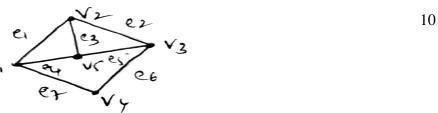
- b. If $ca \equiv cb \pmod{n}$ then prove that $a \equiv b \pmod{n/d}$ where d = gcd(a, b).
- c. State and prove Lagrange's theorem for polynomial.

Contd...2

7

7

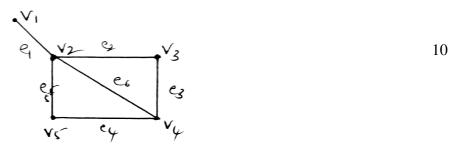
P17MAO751		Page No 2				
6 a.	Solve simultaneous non linear congruence's;	's;				
	$x^2 \equiv 1 \pmod{3}, \ x \equiv 2 \pmod{4}$		6			
b.	What is the remainder when $3^{12} + 5^{12}$ is divided 13?		7			
c.	State and prove Chinese remainder theorem.		7			
	UNIT - IV					


7 a. i) Define Walk, Path and Trial in a graph G with examples.

ii) Define locating number and determine the locating number of a wheel W_5 .

b. i) Define incidence matrix of a graph.

ii) Determine number of edge sequences of length 2 between;


I) v_1 and v_5 II) v_4 and v_2

10

8 a. i) Define circuit matrix of a graph.

ii) Verify I(G). $B(G)^T = 0$ for the following graph:

b. Use circuit matrix to determine how switches are connected in a black box, given the possible combinations: (a, b, f, h, k), (a, b, g, k), (a, e, f, g, k), (a, e, h, k), (b, c, e, h, k), 10 (c, f, h, k), (c, g, k), (d, k).

UNIT - V

- 9 a. i) Define chromatic polynomial of a graph.
 - ii) Determine the chromatic number of, I) $K_{l,n}$ II) C_n 10
 - b. Use graph coloring to schedule a time table for four teachers and four slots

	N_1	N_2	N_3	N_4		
T_1	2	0	1	1		10
T_2	0	1	0	1		
T ₃	0	1	1	1		
T_4	1	0	1	0		

10 a. Explain the application of graph coloring in GSM networks.10b. Construct contact network graph for the given single contact function.

 $F_{ab} = x_1 x_2 x_3 x_5 x_7 + x_1 x_3 x_4 x_6 + x_1 x_5 x_6 x_8 + x_2 x_4 + x_2 x_3 x_5 x_8 + x_5 x_6 x_7$ 10