		Page	e No	1
U.S.N				
P.E.S. College of Engineering, Mandya - (An Autonomous Institution affiliated to VTU, Belag Third Semester, B.E Mechanical Engineeri Semester End Examination; March - 2021	zavi)	_		
Fluid Mechanics	Ma.	x. Ma	rks: 10	00
Course Outcomes				-
 The Students will be able to: CO1: Explain fluid properties like density, weight density, specific volume, specific tension. Solve problems on viscosity and surface tension. CO2: Derive Pascal's law and fundamental law of hydrostatics and Explain buoyancy CO3: Describe the types of fluid flow and solve problems on continuity equation, E Bernoulli's equation. CO4: Explain boundary layer concept and define hydraulic gradient line and total energy CO5: Derive Hagen-Poiseuille equation and apply dimensional analysis technique to content. 	and centre o Guler's equati rgy line.	f buoy ion of	ancy. motion	and
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 m	-			DO
2. No. Questions I : PART - A		BL	COs	PO
I a. What is specific gravity? How is related to density?	10 2	L1	CO1	PO
b. What is atmospheric pressure at a location where the barometric readir		LI	COI	10
is 750 mmHg. Take the density of mercury to be $13,600 \text{ kg/m}^3$.	2	L1	CO2	PO
c. Define velocity potential function and stream function.	2	L1	CO3	PO
d. Define drag coefficient and lift coefficient.	2	L1	CO4	PO
e. Write the dimensions of dynamic viscosity and energy.	2	L1	CO5	PO
II : PART - B	90			
UNIT - I	18			
1 a. Distinguish between;			CO1	POI
 i) Gauge pressure and Absolute pressure ii) Kinematic viscosity and Dynamic viscosity 	9	L1		
ii) Kinematic viscosity and Dynamic viscosityiii) Newtonian and Non-Newtonian fluids				
b. Define surface tension and vapour pressure.				
A shaft 70 mm in diameter is being pushed at a speed of 400 mm	ls			
through a bearing sleeve of 70.2 mm in diameter and 250 mm long. The clearance, assumed uniform is filled with oil of kinematic viscosity	ne 9 ty	L3	CO1	PO
0.005 m^3 /s and specific gravity 0.9. Find the force exerted by the oil of)11			
the shaft				
the shaft. C Derive an expression for the change in height 'h' in a circular tube of	้ล			
c. Derive an expression for the change in height ' h ' in a circular tube of				
c. Derive an expression for the change in height 'h' in a circular tube of liquid with surface tension ' σ ' and contact angle ' θ '. Determine the	ne 9	L3	CO1	PO
c. Derive an expression for the change in height ' h ' in a circular tube of	ne 9	L3	CO1	PO

PO1

CO2

9

L3

UNIT - II	18			
2 a. With neat sketch, explain the following:				
i) Measurement of negative pressure using U-tube manometer	9	L2	CO2	PO2
ii) Stability criteria of immersed bodies				
b. State the basic principle involved in measuring pressure and pressure				
difference using manometers and also calculate the pressure difference				
between A and B for the setup shown in Fig. Q.2.b.				
Oil (s.g. = 0.8)				
\sim				

B

Water 1.50 m

 c. Calculate the resultant force on triangular window ABC as shown in Fig. Q.2.C and also locate its centre of pressure.

Water

P17ME33

25cm Seawater 9 CO2 PO2 L3 20°C $\gamma = 10.08 \text{ kN/m}^3$ 60 cm B. C Fig.Q.2.c **UNIT - III** 18 3 a. Distinguish between the following: i) Uniform and Non-uniform flow 9 CO3 PO1 L2 ii) Stream line and Path line iii) Rotational and Irrational flow b. Check whether the following relations satisfy the requirements for steady and irrotational flow: 9 L3 CO3 PO1 ii) $\phi = (y^2 - x^2)$ i) u = 2x + y, v = x - 2yc. A Venturimeter having throat diameter of 150 mm is installed in a horizontal 300 mm diameter water main. The coefficient of discharge is 0.982. Determine the difference in level of the mercury columns of the 9 L3 CO3 PO1 differential manometer attached to the venturimeter if the discharge is 0.142 m³/s.

P17ME33			Page No 3		
	UNIT - IV				
4 a.	Explain the concept of boundary layer and also derive an expression for displacement thickness.	9	L1	CO4	PO1
b.	An advertise board of 6 m ² is mounted on a pole 5 m height. The wind is blowing with velocity of 36 km/hr. Find the wind force on the board and the bending moment at the base of the pole. Take $C_d = 1.35$ and $\rho = 1.2$ kg/m ³ .	9	L3	CO4	PO1
c.	Lubricating oil at a velocity of 1 m/s flow through a pipe of 100 mm diameter. Determine whether the flow is laminar or turbulent. Also determine the friction factor and the pressure drop over 10 m length. What should be the velocity for the flow to turn turbulent? Take density as 930 kg/m ³ and dynamic viscosity as 0.1 Pa.s.	9	L3	CO4	PO1
	UNIT - V	18			
5 a.	Show that for fully developed laminar flow of a fluid with viscosity ' μ ' flowing between horizontal fixed parallel plates kept at distance 'h' m apart, the mean velocity \overline{U} is related to the pressure gradient $\frac{\partial p}{\partial x}$ by the	9	L2	CO5	PO1
Ŀ	relation $\overline{U} = -\frac{1}{12\mu} \frac{dp}{dx} h^2$.				
b.	Prove that the frictional torque <i>T</i> of a disc of diameter <i>D</i> rotating at a speed <i>N</i> in a fluid of viscosity μ and density ρ in a turbulent flow is given by $T = (D^5 N^2 \rho) f \left[\frac{\mu}{D^2 N \rho} \right].$	9	L2	CO5	PO1
c.	A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at 4 cm from the wall of pipe.	9	L3	CO5	PO1

* * *