P17 I	ME53 Page No.	1
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Mechanical Engineering Semester End Examination; Feb 2021 Turbomachines Time: 3 hrs Max. Marks: 100		
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Anguage and Two sub-graphic form a, b, a) for Maximum of 18 merks from each unit		
Q. No.	<i>II) PART - B: Answer any</i> <u><i>Two</i></u> <i>sub questions (from a, b, c) for Maximum of</i> 18 marks <i>from each unit.</i> Questions	Marks
I a.	I : PART - A Define a "Turbomachine".	10 2
b.	Write the components of the pelton wheel turbine.	2
с.	What is the function of Draft tube?	2
d.	Define the diagram efficiency of a steam turbine.	2
e.	What is Cavitution?	2
	II : PART - B	90
	UNIT - I	18
1 a.	Difference between positive displacement machine and turbo machine.	9
b.	At a 50% reaction stage axial flow turbine, the mean blade diameter is 60 cm. The maximum	
	utilization factor is 0.9 steam flow rate is 10 kg/s. Calculate the inlet and outlet absolute	9
	velocities and power developed, if the speed is 2000 rpm.	
c.	Draw the velocity triangle at inlet and outlet of an axial flow turbine when? i) $R = 0$ ii) $R = 0.5$ iii) $R = 1$ Discuss the energy transfer in these cases.	9
	UNIT - II	18
2 a.	With neat sketch, explain the working principle of pelton turbine.	9
b.	A pelton wheel is to be designed for a head of 60 m, when running at 200 rpm. The pelton	
	wheel developed 95.55 kW. The velocity of bucket is 0.45 times the velocity of the jet, overall	9
	efficiency is 0.85, and coefficient of velocity is equal to 0.98. Find the diameter of jet, diameter	9
	of the wheel and bucket on the wheel.	
c.	Show that for maximum utilization the speed of the wheel is equal to half of speed of jet.	9
	UNIT - III	18
3 a.	Sketch a Francis turbine and explain its working.	9
b.	The inlet and outlet diameter of an outward flow turbine are 1.2 m and 1.5 m respectively. The	
	wheel has a speed of 300 rpm, while working under a head of 45 m. The quantity of water	9
	passing through the wheel is 5 m ³ /s of $\eta_H = 0.90$ and breadth of the wheel is 0.3 m, find the	
	angles of the blades and guide vanes.	
c.	A Kaplan turbine produces 58.800 kW under a head of 25 m, which has overall efficiency of	
	90%. Taking the value of speed ratio $\phi = 1.6$, flow ratio $\psi = 0.5$ and the hub diameter = 0.35	9
	times the outer diameter. Find the diameter and the speed of the turbine.	

Contd....2

UNIT - IV

- 4 a. Why compounding of steam turbine necessary? Describe the velocity compounding of steam turbine with neat sketch.
 - b. Steam issuing from a nozzle to a De-Laval turbine with a velocity of 1000 m/s. The nozzle is 20° , the mean blade speed is 400 m/s. The blades are symmetrical, the mass flow rate = 1000 kg/hr, friction factor = 0.8, nozzle efficiency = 0.95. Calculate;
 - i) The blade angles
 - ii) Axial thrust
 - iii) Work done per kg of steam
 - iv) power developed
 - v) Blade efficiency
 - vi) Stage efficiency

c. With the usual notation, prove that the maximum blade efficiency
$$\eta_{b,\max} = \frac{\cos^2 d_1(1+C_bK)}{2}$$
. 9

UNIT - V

- 5 a. Define the following terms as referred to the centrifugal pump:
 - i) Suction head
 - ii) Static head
 - iii) Manometric efficiency
 - iv) Hydraulic efficiency
 - v) Mechanical efficiency
 - vi) Overall efficiency
 - b. A centrifugal pump with 1.2 m diameter runs at 200 rpm and pumps 1880 lit/s, the average lift being 6 m. The angle which the vanes make at exit the tangent to the impeller in 26° and radial velocity of flow is 2.5 m/s. Determine the Manometric efficiency and the least speed to start pumping against a head of 6 m, inner diameter of impeller being 0.6 m.
 - c. Show that the pressure rise in the impeller of a centrifugal pump, when the frictional and other losses in the impeller are neglected is given by,

$$\Delta p = \frac{\rho}{2} \left[V_{f_1}^2 + U_2^2 - V_{f_2}^2 \cos ec^2 \beta_2 \right]$$

Where V_{f_1} and V_{f_2} are the flow velocities at inlet and outlet of the impeller U_2 = tangential speed of impeller at exit, β_2 = exit blade angle.

* * *

18

9

9

18

9

9

9