U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2019 Electronic Instrumentation

Time: 3 hrs Max. Marks: 100

Note: i) **PART - A** is compulsory. **Two** marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks				
	I:PART-A	10				
I a.	Define the term instrumentation errors.					
b.	List the limitations of Wheatstone's bridge.					
c.	What are the advantages of thermistor?					
d.	Compare the difference between Instrumentation amplifiers and ordinary Op-Amp.					
e.	State the advantages of dual trace over dual beam CRO.					
	II : PART - B	90				
	UNIT - I	18				
1 a.	Define the following terms as applied an electronic instrument:	9				
	i) Accruing and Precision ii) Resolution iii) Significant figure					
b.	Explain then working principle of a dual slope type DVM.	9				
c.	i) Calculate the value of the multiplier resistance on the 50 V range of a DC voltmeter that	4				
	uses a 200 μA meter movement with an internal resistance of 100 Ω .					
	ii) Explain the working of a true RMS voltmeter with the help of a suitable block diagram.	5				
	UNIT - II	18				
2 a.	Derive the balance equation of Kelvin's bridge and discuss its operation.	9				
b.	Derive the equation to measure and inductive impedance of a Maxwell's bridge and also					
	find the series equivalent of the unknown impedance If the bridge constants at balance are	9				
	$C_1 = 0.01 \ \mu\text{F}, \ R_1 = 470 \ k\Omega, \ R_2 = 5.1 \ k\Omega, \ R_3 = 100 \ k\Omega.$					
c.	Write a note on Wagner's earth (ground) connection.	9				
	UNIT - III	18				
3 a.	Explain the resistance thermometer and their advantages.	9				
b.	Explain the working of LVDT with the help of neat sketch and characteristics.	9				
c.	Derive the $K = 1+2\mu$ for gauge factor.	9				

	UNIT - IV	18	
4 a.	Explain the working of RF heterodyne wave analyzer.	9	
b.	Describe the operations of differential instrumentation amplifier using transducer bridge.	9	
c.	Explain the working of RF spectrum analyzer.	9	
	UNIT - V	18	
5 a.	Sketch and explain the block diagram of delayed time base oscilloscope and the system	9	
	wave forms.	9	
b.	Explain with block diagram of system waveforms for the sweep frequency generator.	9	
c.	Explain with a block diagram the frequency synthesizer using a PLL system. Also draw the		
	PLL system waveforms.	9	