\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2019
 Network Analysis

Time: 3 hrs
Note: I) PART - A is compulsory. One question for 2 marks from each unit.
II) PART - B: Answer any two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks
I a. State superposition theorem.	$\mathbf{1 0}$	
b. What are the conditions for series resonance?	2	
c. Define tree and co-tree.	2	
d. What is gate function?	2	
e. Obtain the pole zero plot for the following function:	2	
	$F(S)=\frac{(S-1)(S)}{(S+2)(S+4)}$	2
	II : PART - B	$\mathbf{2}$
	UNIT - I	$\mathbf{9 0}$

1 a. For the network shown in Fig. 1(a) determine the current through the 5Ω resistor.

b. Find VA and VB for the network shown in Fig. 1(b).

c. Determine the current in the 10Ω resistor for the network shown in Fig.1(c).

UNIT - II

2 a. Define;
i) Incidence matrix
ii) Tie set matrix
iii) Cut set matrix
iv) The number of a possible trees of a graph
b. For the network shown in Fig. 2 (b). Write down the tie set matrix and obtain the network equilibrium equation in the matrix form using KVL .calculate the loop currents I, II, III, IV, V and VI are branches and choose 4, 5, 6 as twigs.

UNIT - III
3 a . For the network shown in Fig.3(a) the switch is closed at $t=0$ with zero current in the inductor find $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$

b. In the given network of Fig.3(b) the switch is opened at $t=0$. Solve for $v, \frac{d v}{d t} \quad$ and $\frac{d^{2} v}{d t^{2}}$ at $t=0^{+}$
c. I) State and prove time shifting theorem and show that for the periodic signals, $F(S)=\frac{F_{1}(S)}{\left(1-e^{-T S}\right)}$.
II) Sketch the wave forms for, i) t
ii) $t u(t)$
iii) $t u(t-T)$

UNIT - IV

4 a . At $t=0$ unit phase voltage of unit width is applied to a series RL circuit as shown in Fig. 4(a). Obtain an expression for $i(t)$.

i) R
ii) L
iii) C elements with their corresponding equation (both KVL and KCL)
c. State and prove convolution theorem and Borell's theorem.

UNIT - V

5 a. Find the network functions $\frac{V_{1}}{I_{1}}, \frac{V_{2}}{V_{1}}$ and $\frac{V_{2}}{I_{1}}$ for the network shown in Fig.5(a)
b. Determine the Z-parameters for the network shown in Fig. 5(b).

c. A balanced star connected load having an impedance of $Z_{p h}=10 \angle 30 \Omega$. is connected in star across a balanced 3ϕ, 4 wire supply of 200 V . determine the line current, power absorbed and also draw the vector diagram. Phase reference is RYB.

