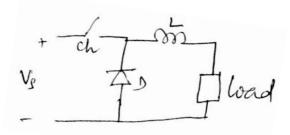
U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2019

Power Electronics


Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a.	Explain the different types of power electronics circuits.								
b.	. Sketch and explain the switching characteristics of power MOSFET.								
c.	. List the differences between power BJT and SCR.								
2 a.	Explain steady state characteristics of BJT with neat diagram.								
b.	Describe briefly the cross section and efficient circuit of IGBT.	10							
	UNIT - II								
3 a.	Explain propositional base control of BJT.	8							
b.	With neat circuit diagram and relevant expressions, explain how power electronic devices								
	protected from $\frac{di}{dt}$ and $\frac{dv}{dt}$ effects.	12							
4 a.	Explain isolation of gate and base devisees.	6							
b.	. With the help of two transistor analogy, explain the principle of switching on of an SCR.								
c.	Explain the series and parallel operation of thyristors.	6							
	UNIT - III								
5 a.	What is communication of SCR? Explain the different types of SCR commutation techniques.	10							
b.	b. With the help neat circuit diagram and wave forms, explain bidirectional controller with								
	R-load and derive an expresssion for output voltage.	10							
6 a.	Explain impulse commutation with neat circuit and wave forms.								
b.	Explain the principle of ON-OFF control with neat circuit diagram and waveforms.	5							
c.	A single phase bidirectional regulator is feeding resistive load of 10 Ω . The supply voltage is	_							
	230 V, 50 Hz. If the firing angle is 45° . Calculate the power absorbed by the load.	5							
	UNIT - IV								
7 a.	Describe the operations of step down chopper with R-L load, and derive relative expression.	8							
b.	For a chopper shown below, DC source voltage is 230 V, load resistance is 10 Ω , consider								
	the voltage drop of 2 V across chopper when it is on. For a duty cycle of 0.4, calculate;								
	i) Average and rms values of output voltage								
	ii) Chopper efficiency								

P17EE51 Page No... 2

Explain the performance parameter of inverters. 6 c. 8 a. Write brief description on classification of choppers with circuit diagrams. 10 With relevant circuit and waveforms, explain the operation of three phase bridge inverter for b. 10 180° mode of operation. UNIT - V 9 a. With the neat circuit and waveforms, explain the operation of single phase half wave 10 controlled rectifier and also derive an expression for output voltage. b. A three phase full wave converter is operated from a three phase star connected 208 V, 60 Hz supply and the load resistance is R = 10 Ω . If it is required to obtain an average output voltage of 50% of the maximum possible output voltage, calculate: 10 i) The delay angle α ii) The rms and average output currents iii) The average and sms iv) The average and rms thrysistor currents v) The rectification efficiency 10 a. With a neta circuit and waveforms, explain the upperation of single phase pully controlled 10 bridge reetifier with R- load for fixing angle of $\alpha = 30^{\circ}$. b. Explain the operation of 3 phase full converter with relative expression and waveforms for

* * *

highly inductive load.

10