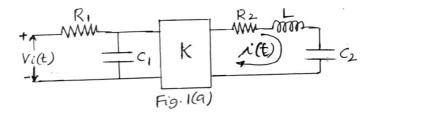


Time: 3 hrs

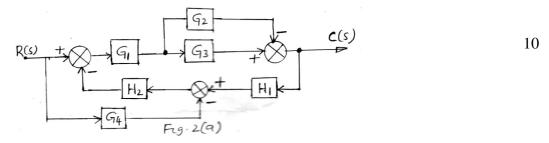
Max. Marks: 100

10

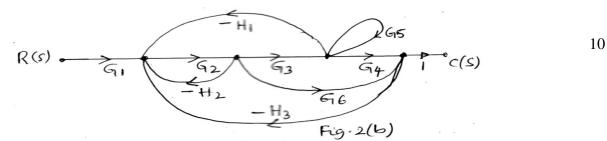

Page No... 1

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I


1 a. In the circuit of Fig. 1(a), K is the gain of an ideal amplifier. Determine the transfer function I(s)

function $\frac{I(s)}{V_i(s)}$



b. Write the electrical analogous networks based on, i) Torque-Voltage ii) Torque-Current analysis for the mechanical system shown in Fig. 1(b).

² a. Apply block diagram reduction technique to find the transfer function $\frac{C(s)}{R(s)}$ for the system shown in Fig. 2(a).

b. Find the overall $TF = \frac{C(s)}{R(s)}$ for the given signal flow graph shown in Fig. 2(b) using Mason's gain formula.

10

10

10

10

6

UNIT - II

- 3 a. Draw the time domain response c(t) of a typical under damped second order system to a step input. Indicate the following time domain specifications of the diagram and also define them;
 10
 i) Delay time ii) Rise time iii) Peak time iv) Maximum Over shoot v) Settling time
- b. The open loop transfer function of a unity negative feedback control system is given by $G(s) = \frac{25}{s(s+5)}$. Determine the following time response specification: 10
 - i) Delay time (t_d) ii) Rise time (t_r) iii) Peak time (t_p) iv) Maximum Over shoot (M_p) .
- 4 a. Derive the expressions for static error constants. How these coefficients are useful in determining steady state error? State any two limitations of static error coefficient method.
- b. For unity feedback system having an open loop transfer function, $G(s) = \frac{K(s+2)}{s(s^3+7s^2+12s)}$.

Determine; i) Type of system ii) Error constants K_p, K_v, K_a

iii) Steady state error for unit parabolic input

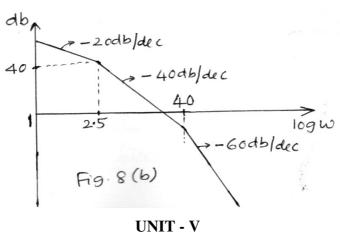
UNIT - III

5 a. A negative feedback control system has $G(s) = \frac{K}{s(s^2 + s + 1)}$ and $H(s) = \frac{1}{(s + 4)}$. Determine the

range *K* for absolute stability of the system. Also find the frequency of sustained oscillations for the limiting value of *K*.

- b. Determine the stability of a system whose characteristic equations are given by, $i) Q(S) = S^5 + S^4 + 2S^3 + 2S^2 + 3S + 15$ *ii*) $Q(S) = S^8 + 5S^6 + 2S^4 + 3S^2 + 1$ Using R-H criterion.
- 6 a. A unity feedback control system has $G(s) = \frac{K}{s(s+2)(s+5)}$. Sketch the root locus and determine;
 - i) Breakaway point
 - ii) Line for $\varepsilon = 0.5$ and the value of *K* for this damping ratio
 - iii) The frequency at which the root-locus crosses the imaginary axis and the corresponding value of K
 - iv) Find the value of K at breakaway point
- b. A feedback control system has the loop transfer function $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+20)}$. Plot the 10

root locus as K is varied from 0 to ∞ . Calculate the value of K which causes instability.


UNIT - IV

- 7 a.State any four advantages and two limitations of frequency response analysis.6
 - b. What are frequency domains Specifications? Define any four of them.
 - c. A system has $\omega_r = 5$ and $M_r = 3$ in frequency domain. Making suitable assumptions determine t_r , t_s , t_p and damped oscillation frequency. Also find percent over shoot assuming standard 8 second order system.

8 a. A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$ draw the Bode plot. Determine Gain

margin and phase margin. Comment on the stability.

b. Determine the transfer function of a system whose magnitude plot is shown in Fig. 8(b)

- 9 a. Sketch the polar plot for the following type 0 sytem $G(s) = \frac{6}{(s+1)(s+2)}$. 10
- b. What do you mean by a polar plot? What is the advantage and limitation of polar plots ?
 10
 Explain the procedure to sketch the polar plot.
- 10 a. Explain Nyquist stability criterion.
 - b. An open loop transfer function of a sytem is given by $G(s)H(s) = \frac{1}{s(1+s)(1+2s)}$. Comment on 14

stability of the system by plotting Nyquist plot. Also find Gain margin and Phase margin.

P17EE52

12

8

6