\square
U.S.N

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Fifth Semester, B.E. - Industrial Production and Engineering
 Semester End Examination; Dec. - 2019
 Composite Materials

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. What is a composite? How composites are classified?
b. Write a note on;
i) Fiber reinforced composites
ii) Particle reinforced composites

2 a. What are the advantages and limitations of composites over other class of materials?
b. Discuss the following:
i) Laminated Composites
ii) Polymer Nano composites

UNIT - II

3 a. Explain briefly the need for developing Metal Matrix Composites.
b. List the various types of reinforcements used in Metal Matrix Composites.
c. What are the advantages and limitations of Metal Matrix Composites?
4. Write a note on applications of composite materials in following sectors:
i) Marine sector
ii) Sports sector
iii) Automobile sector
iv) Future potential of composites

UNIT - III

5 a . Explain the relationship between engineering constants reduced stiffness and compliances.
b. Derive the expressions for Hooke's Law for a Two-dimensional angle Lamina.

6 a. Write a generalized Hooke's law in matrix form. Develop the stiffness matrix and compliance matrix for an orthotropic material.
b. Estimate the compliance and stiffness matrix for a graphite/epoxy lamina using the following properties:
$\mathrm{E}_{1}=181 \mathrm{GPa}$,
$\mathrm{E}_{2}=10.3 \mathrm{GPa}$,
$\mathrm{E}_{3}=10.3 \mathrm{GPa}$
$\mathrm{V}_{12}=0.28$,
$\mathrm{V}_{23}=0.60$,
$\mathrm{V}_{13}=0.27$
$\mathrm{G}_{12}=7.17 \mathrm{GPa}$,
$\mathrm{G}_{23}=3.0 \mathrm{GPa}$,
$\mathrm{G}_{31}=7.0 \mathrm{GPa}$

UNIT - IV

7. Develop an expression for the three stiffness matrices $[A]$, $[B]$ and $[D]$ for 2D Laminate composite.

8 a. Compute the three stiffness matrices [A], [B] and [D] for a three-ply [0/30/-45] graphite /epoxy laminate. Assume that each lamina has a thickness of 5 mm .
$\mathrm{E}_{1}=181 \mathrm{GPa}$,
$\mathrm{E}_{2}=10.3 \mathrm{GPa}$,
$\mathrm{V}_{12}=0.28$,
$\mathrm{G}_{12}=7.17 \mathrm{GPa}$
b. Summarize the laminate codes with sketches.

UNIT - V

9 a . Explain the following process:
i) Pultrusion 12
ii) Filament winding
b. List the NDT methods. Explain Radiology with a neat sketch. 8

10 a . Identify the purpose of NDT. Outline the principle of ultrasonic inspection. 8
b. Illustrate the following process:
i) Hand lay-up technique 12
ii) Vacuum bag molding

