U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Semester End Examination; Jan. / Feb. - 2021 Condensed Matter Physics

Time: 3 hrs

neat diagram.

Max. Marks: 100

Note: i) *Answer FIVE full questions, selecting ONE full question from each unit. ii*) *Missing data, if any, may be suitably assume.*

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms⁻¹; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm⁻¹.

UNIT - I

- 1 a. Derive an expression for the inter planar spacing of planes in terms of Miller indices 8 in a cubic structure. 7 b. Explain briefly the Bravai's Lattice and Lattice parameter. c. A Nacl crystal is used as a diffraction grating with X-rays for the $d_{(111)}$ spacing of the cl ions, the Bragg's angle is 13.75°. If the lattice constant of the crystal is 0.563 nm. Find the 5 wavelength of X-rays. 2 a. Define coordination number and packing factor. Calculate the packing factor for BCC and 8 FCC structures. b. State Bragg's law and derive Bragg's equation for X-ray diffraction. 7 c. Copper has FCC structure and the atomic radius is 0.1278 nm. Calculate the inter planar 5 spacing for (1, 1, 1) plane. UNIT - II 3 a. Derive an expression for thermal conductivity of a conductor using classical free 8 electron theory. b. Explain the principle and working of refrigeration. 7 c. The temperature of air outside a room is 10°C and temperature of air in a room is three times that of outside temperature. Calculate the rate of loss of heat by conduction through a glass 5 window of area 3 m^2 and thickness 2 mm. (Given: Thermal conductivity of glass is1 w/m/degree). 4 a. Explain the determination of thermal conductivity by Lee-Charlton's method, with a 8
 - b. Derive an expression for Wiedemann-Franz's law using classical free electron theory.
 - c. A thermo cole cubical ice box of side 0.3 m has a thickness of 0.5 m. If 4 kg of ice is put in the box, estimate the amount of ice remaining after 4 hours. The outside temperature is 40° C and coefficient of thermal conductivity of thermo cole is 0.01 J/s/m/k. (Given heat of fusion of water is 335×10^3 J/kg).

7

5

P17PH0752

7

5

	UNIT - III	
5 a.	What is reversible and irreversible process and explain entropy-temperature diagram.	8
b.	What is Carnot engine and derive an expression for efficiency of Carnot engine.	7
c.	For a coal fired utility boiler, the temperature of high pressure steam is 540°C and the	5
	cooling tower water temperature is 20°C. Calculate the Carnot efficiency of the power plant.	5
6 a.	Write a note on adiabatic expansion, adiabatic compression, isothermal expansion and isothermal compression.	8
b.	Define steam engine and internal combustion engine with an example. Derive an expression	
	for thermal efficiency of heat engine.	7
c.	In an engine working on Otto cycle, the temperatures at the beginning and at the end of	
	adiabatic compression are 120° and 498° respectively. Find the air standard efficiency of an	5
	engine. (Given adiabatic index $\gamma = 1.4$).	
	UNIT - IV	
7 a.	Define electrostatic potential of a dipole. Derive an expression for electrostatic potential	8
	due to dipole.	0
b.		
	State and explain Biot-Savart's law of electromagnetic induction.	7
c.	Explain the divergence of static magnetic field.	7 5
с. 8 а.		
	Explain the divergence of static magnetic field.	5
8 a.	Explain the divergence of static magnetic field. Define curl of static magnetic field and derive an equation for curl of static magnetic field.	5 8
8 a. b.	Explain the divergence of static magnetic field. Define curl of static magnetic field and derive an equation for curl of static magnetic field. State and explain Faraday's law of electromagnetic induction.	5 8 7
8 a. b. c.	Explain the divergence of static magnetic field.Define curl of static magnetic field and derive an equation for curl of static magnetic field.State and explain Faraday's law of electromagnetic induction.State and explain Lenz's law.	5 8 7 5
8 a. b. c.	Explain the divergence of static magnetic field. Define curl of static magnetic field and derive an equation for curl of static magnetic field. State and explain Faraday's law of electromagnetic induction. State and explain Lenz's law. UNIT - V	5 8 7
8 a. b. c.	Explain the divergence of static magnetic field. Define curl of static magnetic field and derive an equation for curl of static magnetic field. State and explain Faraday's law of electromagnetic induction. State and explain Lenz's law. UNIT - V Derive an expression for variation of mass with velocity and discuss the variation of it with	5 8 7 5
8 a. b. c. 9 a.	Explain the divergence of static magnetic field. Define curl of static magnetic field and derive an equation for curl of static magnetic field. State and explain Faraday's law of electromagnetic induction. State and explain Lenz's law. UNIT - V Derive an expression for variation of mass with velocity and discuss the variation of it with reference to special theory of relativity.	5 8 7 5 8

- b. Derive the relation between energy and momentum using relativistic variation of mass.
- c. A particle is moving with a speed of 0.5 C, calculate the ratio of the rest mass and the mass while in motion.

* * *