\square
P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Automobile Engineering Semester End Examination; March - 2021 Mechanics of Material

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Classify different types of stresses, strain and deformations induced in the mechanical components due to external loads.
CO2: Determine stresses in composite bars, thermal stresses and principal stresses in simple 2D elements.
CO3: Draw Shear Force Diagrams and Bending Moment Diagrams for different types of loads and support conditions.
CO4: Compute and analyze bending and shear stresses and deflections induced in beams.
CO5: Determine stresses in thin and thick cylinders, tensional stresses, and Analyze buckling phenomenon in columns.

Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.

Questions

I : PART - A

10I a. Define Hook's law.
2 L1 CO1
b. Define the terms; i) Principal plane and ii) Principal stress

2 L1 CO2
P1
c. Differentiate between a cantilever and simply supported beam.

2 L1 CO3
d. List the assumption made in theory of simple bending.
e. Differentiate between a thick and thin cylinder.

2

II : PART - B 90

UNIT - I 18

1 a. Derive the equation of relationship between Young's modules and rigidity modules.
b. A brass bar having cross-sectional area of $1000 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in Fig. 1(b). Find the total elongation of the bar. Take $E=1.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

9 L2 CO1
P3
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 1 \quad \mathrm{P} 2$ 0.004 mm . Calculate;
i) Young's modulus
ii) Poisson's ratio
iii) Bulk modulus

UNIT - II
2 a . A steel tube of 30 mm external diameter and 20 mm internal diameter encloses a copper rod of 15 mm diameter to which it is rigidly joined at each end. If at a temperature of $10^{\circ} \mathrm{C}$ there is no longitudinal stress. Calculate the stresses in the rod and tube, when the temperature is raised to $200^{\circ} \mathrm{C}$. Take E for steel and copper as $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ respectively. The value of coefficient of linear expansion for steel and copper is given as $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively.
b. Two planes AB and BC which are at right angles carry shear stress of intensity $17.5 \mathrm{~N} / \mathrm{mm}^{2}$ while these planes also carry a tensile stress of $70 \mathrm{~N} / \mathrm{mm}^{2}$ and a compressive stress of $35 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Determine the principal planes and the principal stresses. Also the maximum shear stress and the planes on which it acts.
c. In an elastic material, the stresses acting on an elementary block are shown in Fig. 2(c).

Compute;
i) Principal stresses and their planes
ii) Maximum shear stress and its plane
iii) Normal, tangential shear and resultant stresses on plane AC

> UNIT - III

3 a . A cantilever of length 2.0 m carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ length over the whole length and a point load of 3 kN at the free end. Draw the SF and BM diagram for the cantilever.
b. The simply supported beam shown in Fig. 3(b), carries two concentrated loads and a uniformly distributed load. Draw the SFD and the BMD.

$7993 b$
c. A simply supported beam AB of 6 m span is loaded as shown in Fig. 3(c). Draw SFD and BMD diagram.

Fig $3 c$
UNIT - IV
4 a . List the assumption made in simple theory of bending and find the relationship between bending stresses and radius of curvature.
b. A symmetric I-section has flanges of size $180 \mathrm{~mm} \times 10 \mathrm{~mm}$ and its overall depth is 500 mm thickness of web is 8 mm . It is strengthened with a plate of size $240 \mathrm{~mm} \times 12 \mathrm{~mm}$ on compression side. Find the moment of resistance of the section, if permissible stress is $150 \mathrm{~N} / \mathrm{mm}^{2}$.
c. A simply supported beam of 6 m span is subjected to a concentrated load of 18 kN at 4 m from left support. Calculate;
i) The position and the value of maximum deflection
ii) Slope at mid span
iii) Deflection at the load point

UNIT - V

5 a . A thin cylindrical shell 2 m long has 200 mm diameter and thickness of metal 10 mm . It is filled completely with a fluid at atmospheric pressure. If an additional $25000 \mathrm{~mm}^{3}$ fluid is pumped in, find the pressure developed and hoop stress developed. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$.
b. A thick cylindrical pipe outside diameter 300 mm and internal diameter 200 mm is subjected to an internal fluid pressure of $14 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the maximum hoop stress developed in the C / S.
c. Determine the diameter of solid shaft which will transmit 440 kW at 280 rpm . The angle of twist must not exceed one degree per meter length and the maximum torsional shear stress is to be limited to $40 \mathrm{~N} / \mathrm{mm}^{2}$. Assume $G=84 \mathrm{kN} / \mathrm{mm}^{2}$.

