P18	AU32	P	age N	o 1	1
	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Automobile Engineering Semester End Examination; March - 2021 Mechanics of Material	401			
Tim	e: 3 hrs	Max.	Marks	: 100	
	Course Outcomes				
C01	Students will be able to: Classify different types of stresses, strain and deformations induced in the mechanical external loads.	-		due to	
	: Determine stresses in composite bars, thermal stresses and principal stresses in simple 2 : Draw Shear Force Diagrams and Bending Moment Diagrams for different types of conditions.			upport	
	 Compute and analyze bending and shear stresses and deflections induced in beams. Determine stresses in thin and thick cylinders, tensional stresses, and Analyze buck columns. 	cling ph	nenomer	10n in	
<u>Note</u> No.	: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from Questions	om each Mark s		COs	P
	I : PART - A	10			
I a.	Define Hook's law.	2	L1	CO1]
b.	Define the terms; i) Principal plane and ii) Principal stress	2	L1	CO2]
c.	Differentiate between a cantilever and simply supported beam.	2	L1	CO3	J
d.	List the assumption made in theory of simple bending.	2	L1	CO4]
e.	Differentiate between a thick and thin cylinder.	2	L1	CO5	I
	II : PART - B	90			
	UNIT - I	18			
1 a.	Derive the equation of relationship between Young's modules and rigidity modules.	9	L2	CO1	I
b.	A brass bar having cross-sectional area of 1000 mm ² is subjected to axial forces				
	as shown in Fig. 1(b). Find the total elongation of the bar.				
	Take $E = 1.05 \text{ x } 10^5 \text{ N/mm}^2$.				
	SOKN BOKN BOKN D.6m IM LIDKN LI	9	L2	C01]
	Fig-16				
c.	A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured				
	extension on gauge length of 200 mm is 0.1 mm and change in diameter is 0.004 mm. Calculate;	9	L3	CO1]
	i) Young's modulus ii) Poisson's ratio iii) Bulk modulus				

i) Young's modulus ii) Poisson's ratio iii) Bulk modulus

Contd... 2

P18	AU32	P	age N	о 2	
UNIT - II		18			
2 a.	A steel tube of 30 mm external diameter and 20 mm internal diameter encloses				
	a copper rod of 15 mm diameter to which it is rigidly joined at each end. If at a				
	temperature of 10°C there is no longitudinal stress. Calculate the stresses in the				
	rod and tube, when the temperature is raised to 200°C. Take E for steel and	9	L3	CO2	P2
	copper as 2.1 \times 10 5 N/mm 2 and 1 \times 10 5 N/mm 2 respectively. The value of				
	coefficient of linear expansion for steel and copper is given as 11×10^{-6} /°C and				
	18×10^{-6} /°C respectively.				
b.	Two planes AB and BC which are at right angles carry shear stress of intensity				
	17.5 N/mm^2 while these planes also carry a tensile stress of 70 N/mm^2 and a				
	compressive stress of 35 N/mm ² respectively. Determine the principal planes	9	L3	CO2	P3
	and the principal stresses. Also the maximum shear stress and the planes on				
	which it acts.				
c.	In an elastic material, the stresses acting on an elementary block are shown in				
	Fig. 2(c).				
	e GOMpa				

Compute;

- i) Principal stresses and their planes
- ii) Maximum shear stress and its plane
- iii) Normal, tangential shear and resultant stresses on plane AC

UNIT - III 18

- 3 a. A cantilever of length 2.0 m carries a uniformly distributed load of 2 kN/m P3 9 length over the whole length and a point load of 3 kN at the free end. Draw the L3 CO3 SF and BM diagram for the cantilever.
 - The simply supported beam shown in Fig. 3(b), carries two concentrated loads b. and a uniformly distributed load. Draw the SFD and the BMD.

Contd...3

Page No... 3

P18AU32

 c. A simply supported beam AB of 6 m span is loaded as shown in Fig. 3(c). Draw SFD and BMD diagram.

	UNIT - IV	18			
4 a.	List the assumption made in simple theory of bending and find the relationship between bending stresses and radius of curvature.	9	L2	CO4	P2
b.	A symmetric I-section has flanges of size 180 mm \times 10 mm and its overall depth is 500 mm thickness of web is 8 mm. It is strengthened with a plate of size 240 mm \times 12 mm on compression side. Find the moment of resistance of the section, if permissible stress is 150 N/ mm ² .	9	L3	CO4	Р3
c.	 A simply supported beam of 6 m span is subjected to a concentrated load of 18 kN at 4 m from left support. Calculate; i) The position and the value of maximum deflection ii) Slope at mid span iii) Deflection at the load point 	9	L4	CO4	Р3
	m) 2 chocking at the roug point				
	LINIT - V	18			
5 a.	UNIT - V A thin cylindrical shell 2 m long has 200 mm diameter and thickness of metal	18			
5 a.	A thin cylindrical shell 2 m long has 200 mm diameter and thickness of metal 10 mm. It is filled completely with a fluid at atmospheric pressure. If an additional 25000 mm ³ fluid is pumped in, find the pressure developed and hoop	18 9	L3	CO5	Р3
5 a. b.	A thin cylindrical shell 2 m long has 200 mm diameter and thickness of metal 10 mm. It is filled completely with a fluid at atmospheric pressure. If an		L3 L3	CO5 CO5	P3 P3

* * *