$\square$

## P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Industrial and Production Engineering
Semester End Examination; Dec. - 2019
Mechanics of Materials
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No. Questions MarksI : PART - A10
I a. Define Principle of Superposition. ..... 2
b. How the stresses and load carried by each member of composite bar is calculated. ..... 2
c. When the maximum bending moment occurs in Simply supported beams? ..... 2
d. Explain Neutral axis and section modulus. ..... 2
e. How to find the Moment of Inertia in Unsymmetrical I-Section. ..... 2
II : PART - B ..... 90
UNIT - I ..... 18
1 a. The ultimate stress for a hollow steel column which carries an axial load of 1.9 MN is $480 \mathrm{~N} / \mathrm{mm}^{2}$. If the external diameter of the column is 200 mm , determine the internal8 diameter. Take the factor of safety as 4 .
b. A member ABCD is subjected to point loads $P_{1}, P_{2}, P_{3}$ and $P_{4}$ as shown in Fig. 1(b). Calculate the force $P_{2}$ necessary for equilibrium, if $P_{1}=45 \mathrm{kN}, \mathrm{P}_{3}=450 \mathrm{kN}$ and $\mathrm{P}_{4}=130 \mathrm{kN}$. Determine the total elongation of the member, assuming the modulus of elasticity to be $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
c. Derive an equation for Volumetric Strain of a cylindrical rod.
UNIT - II
2 a . Two brass rods and one steel rod together support a load as shown in the Fig. 2(a). If the stresses in brass and steel are not to exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$ and $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the safe load that can be supported. Take $E$ for steel $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for brass $=1 \wedge 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. The cross-sectional area of steel rod is $1500 \mathrm{~mm}^{2}$ and of each brass rod is $1000 \mathrm{~mm}^{2}$.
b. A steel tube of 20 mm diameter passes centrally through a copper tube of 50 mm external diameter and 40 mm internal diameter. The tube is closed at each end by rigid plates of negligible thickness. The nuts are tightened tightly home on the projecting parts of the rod. If the temperature of the assembly is raised to $50^{\circ} \mathrm{C}$, calculate the stress induced in copper

$$
-1+2
$$

UNIT - II and steel. Take E for steel and copper as $200 \mathrm{GN} / \mathrm{mm}^{2}$ and $100 \mathrm{GN} / \mathrm{mm}^{2}$ respectively. The value of coefficient of linear expansion for steel and copper is given as $12 \times 10^{-6}$ per $^{\circ} \mathrm{C}$ and $18 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ respectively.
c. A rectangular bar of cross-sectional area of $11000 \mathrm{~mm}^{2}$ is subjected to a tensile load P as shown in Fig. 2(c). The permissible normal and shear stresses on the oblique plane BC are given as $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $3.5 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Determine the safe value of $P$.

## UNIT - III

3 a . A cylindrical shell is 3 m long, and is having 1 m internal diameter and 15 mm thickness. Calculate the maximum intensity of shear stress induced and also the changes in the dimensions of the shell if it is subjected to an internal fluid pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$.
b. A simply supported beam of length 10 m carries the uniformly distributed load and two point loads as shown in Fig. 3(b). Draw the SF and BM diagram for the beam. Also calculate the maximum bending moment.
c. A beam of length 12 m is simply supported at two supports which are 8 m apart, with an overhang of 2 m on each side as shown in the Fig. 3(c). The beam carries a concentrated load of 1000 N at each end. Draw SF and BM diagrams.

## UNIT - IV

4 a. With a neat sketch, derive an expression for Bending Equation.
b. Calculate the maximum stress induced in a cast iron pipe of external diameter 40 mm , of internal diameter 20 mm and of length 4 meter when the pipe is supported at its ends and carries a point load of 80 N at its centre.
c. A symmetrical I-Section has flanges of size $200 \mathrm{~mm} \times 10 \mathrm{~mm}$ and its overall depth is 400 mm . Thickness of web is 8 mm . If the permissible stress is $150 \mathrm{~N} / \mathrm{mm}^{2}$, find the moments of resistance. Compare it with equivalent section of same area but,
i) Square section
ii) Rectangular section with depth twice with width
iii) Circular section

## UNIT - V

5 a . A Simply supported beam of 6 m span is subjected to a concentrated load of 18 kN at 4 m from left support. Calculate,
i) The position and the value of maximum deflection
ii) Slope at mid-span
iii) Deflection at the load point
b. Derive Torsional Equation.
c. A built up I section has an overall depth of 400 mm , width of flanges 300 mm , thickness of flanges 50 mm and web thickness 30 mm . It is used as a beam with simply supported ends and it deflects by 10 mm when subjected to a load of $40 \mathrm{kN} / \mathrm{m}$ length. Find the safe load if
$\square$


Fig. 1(b)


Fig. 2(a)


Fig. 2(c)


Fig. 3(b)

