P18 A	AU33		Page	e No	. 1
	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Automobile Engineering Semester End Examination; March - 2021 Thermodynamics Time: 3 hrs Max. Marks: 100					
Course Outcomes					
CO1: CO2: CO3: CO4: CO5:	tudents will be able to: Design and Implement standard data structures like stack using recursion. Design and implement operations on linked list. Develop programs to implement different queues. Design and implement different tree traversal techniques using iteration and recursion Implement sorting and searching techniques.	l.			
	I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks	from eac	h unit.		
III) Assume suitably missing data if any. IV) Use of Thermodynamic data and book is permitted.					
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	Define thermodynamic equilibrium.	2	L1	C1	P1
b.	Write study flow energy equation for Nozzle.	2	L1	C2	P1
c.	Define heat pump and define refrigerator.	2	L1	C3	P1
d.	Define thermal efficiency.	2	L1	C4	P1
e.	Unit of refrigeration.	2	L1	C5	P1
	II : PART - B	90			
1.	UNIT - I	18			
1 a.	Explain the terms: macroscopic and microscopic point of view, system, state,	9	L1	C1	P1
b.	cycle and property. Define a new temperature scale say "B" in which boiling point of water are				
υ.	600°B and 100°B respectively "				
	i) Correlate this scale with centigrade scale	9	L2	C1	P2
	ii) Reading on the scale is same number on the corresponding absolute		22	01	
	temperature scale, what is the absolute temperature on °B?				
c.	A home cooler has fan of 170 watts rating and a water circulating pump of				
	50 watts rating. If the cooler operates for 10 hrs, find the energy consumed by	9	L2	C1	P2
	the cooler.				
	UNIT - II	18			
2 a.	State and explain the first law of thermodynamics for a closed system undergoing cyclic process. Show that energy is a property of the system.	9	L2	C2	P1
b.	Apply steady flow energy equation for the following systems:	0	1.0	$\mathbf{C}^{\mathbf{A}}$	D2
	i) Air compressor ii) IC engine	9	L2	C2	P2
	Contd 2				

c. In a non-flow reversible process, the pressure and volume are related by, $p = V^2 + \frac{20}{V}$ where pressure *P* is in bar and *V* is in m³. During the process 9 L3 C2 P2 the volume changes from 2 m³ to 6 m³ and heat added is 9000 kJ. Determine the changes in internal energy. **UNIT - III** 18 3 a. State second law of thermodynamics and prove that they are equivalent. 9 L2 C3 **P1** Define irreversibility and mention the factors which render a process b. 9 L1 C3 **P1** irreversible. A reversible heat engine receives heat from a mixture of water vapour and c. liquid water under a pressure of 1.013 bar and rejects 50 kJ of heat per 9 L3 C3 P2 second to a mixture of ice and liquid water at 0.00602 bar pressure. Determine the power delivered by the engine. **UNIT - IV** 18 Obtain an expression for air standard efficiency of an Otto cycle. 9 C4 P1 4 a. Show that intermediate pressure in the two stage air compressor with a b. 9 C4 P2 perfect inters cooling is a geometric mean with initial and final pressure. c. A single acting single cylinder air compressor has a cylinder diameter of 15 cm and 20 cm stroke. Air is drawn into the cylinder at a pressure of 1.0 bar and 20°C, when is compressed to a pressure of 6 bar according to the 9 C4 P2 law $PV^{1.3}$ = constant. Find the theoretical power required to drive the compressor, if the speed is 110 rpm. Also determine the weight of air compressed per minute. UNIT - V 18 What are the different properties required for a good refrigerant? 9 P1 5 a. C5 b. Define and explain: i) Dry bulb temperature ii) Wet bulb temperature 9 C5 P2 iii) Humidity ratio iv) Dew point temperature v) Relative humidity Explain the working principle of vapour compression refrigeration system с. 9 **P**2 C5 with a neat diagram and also plot the same on P-h and T-S diagram.

Page No... 2

P18AU33