

P17IP35 Pag		. 2	
с.	Find the magnitude and direction of the resultant force due to water acting on a roller gate		
	of cylindrical farm of 4 m dia, when the gate is placed on the dam in such a way that water	9	
	is just going to spill. Take the length of the gate as 8 m.		
UNIT - III 18			
3 a.	Obtain an expression for continuity equation for a three dimensional flow.	9	
b.	Derive Euler's equation of motion and deduce Bernoulli's equation from it.	9	
с.	A 20 cm \times 10 cm venturimeter is inserted in a vertical pipe carrying oil of S _p .g _r .0.8, the		
	flow of oil in upward direction. The difference of levels between the throat and inlet section	9	
	is 50 cm. The oil mercury differential manometer gives a reading of 30 cm of mercury. Find)	
	the discharge of oil Neglect losses.		
	UNIT - IV	18	
4 a.	i) Write the different expressions for loss of head due to friction in pipe flow and explain the terms?	4	
	ii) What do you understand by minor energy losses? List the various energy losses that occurs during pipe flow with relevant equations	5	
b.	i) Enumerate the classification of turbines.		
	ii) Prove that the work done/sec/unit weight of water in a reaction turbine is given	3	
	as $\frac{1}{g} [V_{w_1} U_1 \pm V_{w_2} U_2]$	6	
с.	Find the loss of head due to friction in a pipe of diameter 300 mm and length 50 m through		
	which water is flowing at a velocity of 3 m/s using,	9	
	i) Darey's formula	,	
	ii) Chezy's formula for which $c = 60$, Take γ for water = 0.01 stoke.		
	UNIT - V	18	
5 a.	Explain with a neat sketch the working principle of reciprocating pumps.	9	
b.	Drive an expression for work-done by the impeller on water in a centrifugal pump with	9	
	usual notations.	,	
с.	The internal and external diameters of the impeller of a centrifugal pump are 200 mm and		
	400 mm respectively. The pump is running at 1200 rpm. The vane angle of the impeller at	9	
	inlet and outlet are 20° and 30° respectively. Determine the work done by the impeller per	-	
	unit weight of water. Draw velocity triangle at inlet and outlet		

* * *