	<i>U.S.N</i>								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Automobile Engineering Semester End Examination; March - 2021 Material Science and Metallurgy									
Time:	3 hrs	Me	ax. Mo	urks: 1	00				
 Course Outcomes The Students will be able to: CO1: Ability to identify different types of crystalline structure, defects of metals and laws governing the diffusion phenomena. CO2: Ability to apply the knowledge of mechanical behavior to select appropriate material for given automotive component. CO3: Ability to Interpret the phase diagrams of metals and alloys and use them in thermal processing of the materials. CO4: Ability to Select appropriate heat treatment process for specific requirements. CO5: Describe the effect of alloying elements on properties and fabrication process and applications of composite materials with economic and social concerns. 									
	I) PART - A is compulsory. Two marks for each question.								
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.									
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs				
I a.	State Fick's First and Second law of diffusion.	2	L1,2	CO1	PO2				
b.	List different parameters affecting fracture.	2	L1,2	CO2	PO1				
c.	Define the term "PHASE".	2	L1	CO3	PO1				
d.	What do you mean by heat treatment? Why it is necessary?	2	L1	CO4	PO2				
e.	Classify the composite material based on the type of matrix.	2	L2	CO5	PO2				
	II : PART - B	90							
	UNIT - I	18							
1 a.	What are vacancies? How they are formed and explain the formation of	9	L1,2	CO1	PO2				
	Schottky and Frenkel defects.								
b.	i) Define engineering stress and strain, also true stress and strain.								
	ii) A 12.5 mm dia aluminum alloy test bar is subjected to a load of								
	2 tones. If the dia of the bar is 12.4 mm at this load, calculate	9	L3	CO1	PO3				
	engineering stress, engineering strain, true stress, and true strain.								
	Assume no change in volume.								
с.	Draw the stress, strain diagram (Schematic) of mild steel and describe								
	how the following properties can be obtained from the curve:	9	L3	CO1	PO3				
	i) Elastic modulus ii) Yield strength								
	iii) UTS iv) Ductility	10							
2		18							
2 a.	State Griffith theory of fracture. Derive an expression for the stress required to propagate a crack in brittle material.	9	L3	CO2	PO3				

P18AU34			Pc	ige No 2
b.	How fractures are classified? State and explain different types of	9	L3	CO2 PO1
	fracture giving appearance of the fracture in each case.	9	LS	CO2 FOI
c.	What is meant by creep? With the help of creep curve, explain different	9	L3	CO2 PO1
	stages of creep.	,	13	002 101
	UNIT - III	18		
3 a.	Two metals A and B have their melting points at 900°C and 800°C			
	respectively. The alloy pair forms a eutectic at 600°C of composition			
	60%B and $40%A$. A and B have unlimited mutual liquid solubilities.			
	Their solid solutions are as follows:			
	10%B in A at 600°C and 5%B in A at 0°C			
	8%A in B at 600°C and 4%A in B at 0°C			
	Assume the liquidus, solidus and solvus lines to be straight. No solid	12	L4	CO3 PO4
	state reactions or any intermediate phase changes occur in the series.			
	i) Draw the phase diagram for the series and label all salient			
	temperatures, compositions and regions.			
	ii) Find the room temperature structure of an alloy of composition			
	60% A and $40%$ B, with respect to the number, type, extent and			
	composition of the phases.			
b.	Discuss the solidification mechanism in pure metals. How do you	6	L3	CO3 PO2
	distinguish homogeneous and heterogeneous nucleation?			
с.	Explain the steps involved in the construction of T-T-T diagram.	6	L2	CO3 PO1
	UNIT - IV	18		
4 a.	Distinguish between Normalizing and Annealing. Describe the types	9	L3	CO4 PO2
	of Annealing.			
b.	What is the purpose of surface hardening treatment? What types of	9	L2	CO4 PO2
	steel can be surface hardened and how?			
с.	Explain induction hardening and flame hardening processes with the	9	L2	CO4 PO1
	help of neat sketches. UNIT - V	18		
5 a.	State the properties and uses of Grey, White, Malleable, and Spheroidal	10		
J a.	cast iron.	9	L2	CO5 PO2
b.	What is a composite material? How is it classified based on the shape			
υ.	of reinforcement and type of matrix. Explain any two from each	9	L2	CO5 PO2
	classification.	,		000 102
с.	Discuss the applications of composites.	9	L2	CO5 PO1
	· · · r r · · · · · · · · · · · · · · ·	-		