P18	AU52	Р	age N	Io 1	
	U.S.N				
Tim	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Automobile Engineering Semester End Examination; Feb 2021 Design of Machine Elements - II e: 3 hrs	401	larks:	100	
	Course Outcomes				
CO1 CO2 CO3 CO4 CO5	 Students will be able to: Analyze the stresses in the critical section of a curved beam and design springs for diff Design Spur and helical and gears. Design Bevel and worm gears. Design clutches and brakes, with an understanding of safety issues related to brakes. Select lubricants and design sliding contact bearings, select rolling contact applications. I) PART - A is compulsory. Two marks for each question. 				_
	<i>II)</i> PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks	from each	unit.		_
. No.	Questions I : PART - A	Marks 10	BLs	COs	P
I a.	List the assumptions made in finding stress distribution.	2	L1	CO1	Р
b.	List the properties of involute tooth profile.	2	L1	CO2	P
c.	Explain self locking in worm gearing.	2	L1	CO3	P
d.	Explain the creep phenomenon in belt drives.	2	L1	CO4	P
e.	List different types of bearings.	2	L1	CO5	P
	II : PART - B	90			
1 0	UNIT - I Derive the expression for bending stress in curved beams.	18 8	L2	CO1	D
1 a. b.	The section of crane hook is rectangular in shape whose width is 30 mm and		LZ	COI	Г
υ.	depth is 60 mm. The centre of curvature of the section is at a distance of				
	125 mm from the inside section and the load line is 100 mm from the same		L3	CO1	р
	point. Find the capacity of the hook, if the allowable stress in tension is 75 N/mm^2 .			001	1
c.	A helical value spring is to be designed for an operating load range of approximately 00 to 135 N. The deflection of the spring for the load range is				
	approximately 90 to 135 N. The deflection of the spring for the load range is 7.5 mm. Assume a spring index of 10 and factor of safety = 2. Design the spring	10	L3	CO1	P
	the spring.	10			
2 .	UNIT - II Derive an expression for beam strength of a spur gear tooth with standard	18			
2 a.	Derive an expression for beam strength of a spur gear tooth with standard notation.	4	L2	CO2	P
b.	A cast steel spur gear pinion having 21 teeth and rotating at 1500 rpm is required to transmit 9 kW to a high grade CI gear to run at 500 rpm. The teeth		L4	CO2	P
	are $14\frac{1}{2}^{\circ}$ involute form. Design the gear completely.	-	-		

Ç

P18AU52		Page No 2					
c.	c. Design a pair of helical gear to transmit 12 kW at 1200 rpm of pinion. The						
	velocity ratio 3:1 pinion has 24 teeth and is made of 0.4% carbon steel	14					
	untreated. The gear is made of cast steel. The teeth are $14\frac{1}{2}^{\circ}$ involute form in	14	L4 CO2 PO3				
	normal plane. Helix angle is 25°.						
	UNIT - III	18					
3 a.	Explain briefly the formative number of teeth of bevel gears.	4	L2 CO3 PO1				
b.	Two shafts inclined at 60° are connected by pair of bevel gears to transmit						
	9 kW at 900 rpm of 24 teeth cast steel pinion. The gear is made of high grade	14	L4 CO3 PO3				
	CI and is to run at 300 rpm. The teeth are $14\frac{1}{2}^{\circ}$ involute form. Design the gear.						
c.	Design a worm gear drive to transmit 12 kW at 1200 rpm. Speed reduction						
	designed is 30:1. The worm is made of hardened steel ($\sigma_0 = 210$ MPa) and gear						
	of phosphor bronze ($\sigma_0 = 90$ MPa). The teeth are $14\frac{1}{2}^{\circ}$. Determine the heating	14	L4 CO3 PO3				
	capacity of the gears.						
	UNIT - IV	18					
4 a.	Write a note on the effect of 'slip' on velocity ratio in belt drives.	6	L2 CO4 PO1				
b.	Select a V - belt drive to transmit 10 kW of power from a pulley of 200 mm						
	pitch diameter mounted on an electric motor running at 720 rpm to another						
	pulley mounded on compressor running at 200 rpm. The service is heavy duty	12	L3 CO4 PO2				
	varying from 10 hours to 14 hours per day and centre distance between centre						
	of pulleys is 600 mm.						
c.	A simple band brake of drum diameter 600 mm has a band passing over it with						
	an angle of contact of 210° while one end is connected to the fulcrum. The						
	other end is connected to the brake lever at a distance of 400 mm from the	12	L3 CO4 PO3				
	fulcrum. The brake lever is 1 m long. The brake is to absorb 15 kW at 720 rpm.						
	Design the brake lever of rectangular cross section assuming the depth to be						
	thrice the width. Take allowable stress as 80 MPa.						
	UNIT - V	18					
5 a.	Derive Petroff's equation for coefficient of friction.	6	L2 CO5 PO1				
b.	Design the main bearings of a 4-stroke diesel engine to sustain a load of 6 kN.	12	L2 CO5 PO2				
	The operating speed of the shaft is 100 rpm.						
c.	Select a suitable ball bearing for the spindle of a drilling machine rotating at						
	1200 rpm. The bearing is subjected to work for 8 hrs / day for a service life of	12	L3 CO5 PO2				
	$5\frac{1}{2}$ years. Based on strength, the minimum diameter of spindle is 50 mm.						