U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; April - 2021

Engineering Chemistry

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Aware and Recognize the importance of Chemical fuels and Alternate fuels.
- CO2: Describe the construction, working and applications of electrodes, cells, and batteries.
- CO3: Apply the knowledge of Chemistry to understand the mechanism and prevention of corrosion. Engineering applications of electro-plating and electro-less plating.
- CO4: Synthesis of various polymers and study their applications. Use of cement and lubricants in the field of engineering. Acquiring the knowledge of liquid crystals, nano science, water technology and water pollution.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Define cracking.	2	L1	CO1	PO1
b.	What is single electrode potential and standard electrode potential?	2	L1	CO1	PO1
c.	Give the reason for electro chemical corrosion.	2	L1	CO1	PO1
d.	Give the synthesis of Butyl rubber.	2	L2	CO2	PO2
e.	Write the international standards of drinking water.	2	L1	CO1	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Define GCV and NCV. Illustrate the experimental determination of calorific value of solid fuel by bomb calorimeter method.	9	L2	CO2	PO2
b.	Explain reformation of petrol with any three examples. Illustrate the process of knocking.	9	L3	CO3	PO2
c.	Explain how biodiesel is prepared? Mention the advantages and disadvantages	9	L2	CO2	PO2
	UNIT - II	18			
2 a.	What is standard electrode potential? Derive Nernst equation for single				
	electrode potential. Discuss the construction and working of calomel	9	L1	CO1	PO1
	electrode.				
b.	Differentiate between battery and cell. Explain the construction and working of Ag_2O -Zn battery with applications.	9	L3	CO3	PO2

P18CH12				Page No 2			
c.	Discuss the construction of Li-MnO ₂ battery. An electro chemical cell						
	consists of iron electrode dipped in 0.1M FeSO ₄ and silver electrode						
	dipped in 0.05 M AgNO ₃ . Write the cell representation and cell reactions.	9	1.2				
	Calculate emf of the cell at 298 K. Given that the standard reduction		L3	CO3	PO2		
	potentials of iron and silver electrodes are -0.44 V and +0.80 V						
	respectively.						
	UNIT - III						
3 a.	Explain the electrochemical theory of corrosion with reactions. Discuss the galvanization process.			CO2	PO2		
b.	Outline the following factors affecting on the rate of corrosion:						
	i) pH ii) Temperature	9	L2	CO2	PO2		
	iii) Nature of metal iv) Nature of corrosion product						
c.	Mention the technological importance of metal finishing. Discuss the	0					
	electro less plating of nickel.	9	L1	CO1	PO1		
	UNIT - IV	18					
4 a.	How are the following polymers are are synthesized? Mention their						
	applications:	9	L3	CO3	PO2		
	i) Kevlar ii) Polyurethane iii) Urea formaldehyde						
b.	b. Illustrate the process of vulcanization and give the preparation of Thiokol			CO2	PO2		
	rubber.	9	L2	CO2	PO2		
c.	Discuss the following properties of cement:						
	i) Soundness	9	L2	CO2	PO2		
	ii) Quality			CO2	102		
	iii) shrinkage mentions the functions of lubricants						
	UNIT - V	18					
5 a.	Outline boiler scale and sludge. Explain how boiler scales are formed?	9	L2	CO2	PO2		
	Mention their ill effects.			00 2	102		
b.	b. Define COD and BOD. Explain the determination COD of inocstrial			CO2	PO2		
	waste water experimentally.			-	-		
c.	Differentiate lyo-tropic and thermo tropic liquid crystals and summarize	9	L2	CO2	PO2		
	the bottom and top down approach of synthesis of nano particles						