
P18CS32		ŀ	Page I	Vo 1	
<i>U.S.N</i>					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Computer Science and Engineering Semester End Examination; March - 2021 Digital Logic Design Time: 3 hrs					
Course Outcomes					
The Students will be able to: CO1: Design simplified logic circuits using Boolean equation minimization techniq CO2: Design the data processing circuits. CO3: Design memory circuits. CO4: Design shift registers and counters using flip-flops. CO5: Derive state machine models for sequential circuits and write VHDL code for <u>Note:</u> I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of I	r all logic cir		unit.		
Q. No. Questions	Mark	s BLs	COs	POs	
I : PART - A I a. What is the total number of minterms in the Boolean express A + BC?	10 sion 2	L1	C01	PO1, 2,	
b. Design 8:1 multiplexer using 2:1 multiplexers.	2	L4	CO2	PO1, 2,	
c. How do you convert a JK flip-flop to T flip-flop?	2	L3	CO3	PO1, 2,	
d. Write the counting sequence of 4-bit Johnson counter with an introduce value of 0000.	itial 2	L2	CO4	PO1, 2,	
e. What is the difference between verilog full case and parallel case?	2	L1	CO5	PO1, 2,	
II : PART - B	90				
UNIT - I 1 a. Give the truth table for the following function and reduce the satusing Karnaugh map technique: $F(A, B, C, D) = \Sigma m (1, 3, 4, 6, 8, 9, 11, 13, 15) + \Sigma d(0, 2, 14)$	18 ame 6		C01	PO1, 2,	
b. Define minterm, maxterm, negative logic and positive logic. Simp the following function using k-map technique and implement us basic gates F(A, B, C, D) = B'C'D' + ABD + B'CD + BC'D' + A'BCD	•		CO1	PO1, 2,	
c. Simplify the following expression using tabulation method and g the circuit for essential prime implicants. $F(A, B, C, D) = \Sigma m(0, 4, 8, 10, 12, 13, 15) + d(1, 2)$	give 12		CO1	PO1, 2,	
UNIT - II 2 a. What is magnitude comparator? Design 4-bit comparator us logic gates.	18 sing 9		CO2	PO1, 2,	
 b. Design a combination circuit to convert; i) 3-bit binary to its 1's compliment form ii) 3-bit binary value to its gray code 	9		CO2	PO1, 2,	

P18CS32	Page No 2	
c. Explain different multiplexers (4:1, 8:1, 16:1). Implement the		
following using 4:1 multiplexer	9	CO2 PO1, 2, 3
$F(A, B, C, D) = \Sigma m(0, 2, 3, 5, 6, 7, 11, 14, 15)$		
UNIT - III	18	
3 a. Explain Programmable Logic Array (PLA). Design the Boolean		
functions using PLA.		
A = XY + XZ'	9	CO3 PO1, 2, 3
$\mathbf{B} = \mathbf{X}\mathbf{Y}' + \mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Z}'$		
X Y		
b. Convert the following flip flop and draw the circuit and explain;		
i) SR flip flop to D flip flop	9	CO3 PO1, 2, 3
ii) JK flip flop to D flip flop		
c. What is race around conditions? Explain master slave JK flip flop	9	CO3 PO1, 2, 3
using NAND gate.	9	CO3 FO1, 2, 3
UNIT - IV	18	
4 a. Explain Ring counter and Johnson counter in detail.	9	CO4 PO1, 2, 3
b. Design an asynchronous decade counter and explain with timing	9	CO4 PO1, 2, 3
diagram.	,	004 101, 2, 5
c. Design mod-6 synchronous counter using JK flip flop and implement	9	CO4 PO1, 2, 3
the same.	,	001 101, 2, 3
UNIT - V	18	
5 a Darive the state table and state and timing diagram for acquantial		

5 a. Derive the state table and state and timing diagram for sequential circuit in Fig. 5(a).

CO5 PO1,2,3,5

- b. Give the state synthesis table, design equation and circuit diagram for vending machine problem.
 c. Write the VHDL code for;
 - i) T-flip flop 6 CO5 PO1,2,3,5 ii) 8:1 multiplexer