U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Computer Science and Engineering **Semester End Examination; March - 2021**

Computer Organization

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand and analyze the machine instructions and program execution.
- CO2: Understand and explain the I/O organisation.
- CO3: Understand and explain the memory system.
- CO4: Apply the algorithms used for performing various arithmetic operations.
- CO5: Understand and Explain the Concept of Basic Input/Output.

Note: I) PART - A is compulsory. Two marks for each question.

	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.					
Q. No.	Questions	Marks BL	s COs POs			
	I : PART - A	10				
I a.	What is a compiler?	2	CO1			
b.	List four types of operations that the computer instructions must be capable of performing.	2	CO2			
c.	What is source program and object program?	2	CO3			
d.	Define Micro-programmed control.		CO4			
e.	What is the need for cache memory?	2	CO5			
	II: PART - B					
	UNIT - I	18				
1 a.	Define system software. Mention various functions performed by it.	9	CO1			
b.	Write a diagram showing the basic functional units of a computer and explain the control unit in detail.	9	CO1			
c.	Consider two processor <i>A</i> and <i>B</i> with the following parameters:					
	Processor A: Length of one clock cycle = 0.8 nano seconds					
	Processor B : Length of one clock cycle = 1.25 nano seconds					
	i) What is the clock rate of processor A?	0	G01			
	ii) What is the clock rate of processor <i>B</i> ?	9	CO1			
	iii) If a program has 250 million instruction to be executed and each instruction					
	takes 4 clock cycles to execute on processor A, calculate the total program					
	execution time on processor A .					
	UNIT - II	18				
2 a.	Illustrate the concept of Byte addressability, Big Endian and Little Endian assignments.	9	CO2			

P18CS34			Page No 2
b.	What do you mean by addressing mode? Explain various types of addressing modes with suitable examples.	9	CO2
c.	Mention the general syntax of three-address and two-address instruction.		
	Illustrate how the three-address instruction Add A, B, C can be implemented	9	CO2
	using two-address instructions.		
	UNIT - III	18	
3 a.	Consider the following instruction Add (R_3), R_1 . Explain how this instruction is executed by mentioning the action performed for execution in detail.	9	CO3
b.	What are the operations performed by the 'call' instruction? Illustrate the process of subroutine linkage using a link register.	9	CO3
c.	Illustrate various types of Shift and Rotate instructions with suitable example.	9	CO3
	UNIT - IV	18	
4 a.	Explain single-bus organization of the data path inside a processor with an aid of diagram.	9	CO4
b.	Give differences between Hardwired control unit and Micro-programmed control unit.	9	CO4
c.	Define Bus master. Explain various types of Bus arbitration in detail.	9	CO4
	UNIT - V	18	
5 a.	Describe the following types of ROM:		
	i) PROM	9	CO5
	ii) EPROM	9	COS
	iii) EEPROM		
b.	What are different cache mapping functions? Explain them.	9	CO5
c.	Illustrate Booth algorithm for signed operand multiplication.	9	CO5