U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Information Science and Engineering
Semester End Examination; Dec. - 2019
Computer Organization and Architecture

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks			
	I: PART - A	10			
I a.	Represent +99 in sign and magnitude and 2's complement form.	2			
b.	Write the status registers of keyboard and display interface.	2			
c.	List the phases used to process (execute) an instruction.	2			
d.	Write the diagram of static RAM cell.	2			
e.	Write the Booth's multiplier recoding table.				
II : PART - B					
	UNIT - I	18			
1 a.	Convert the following pairs of decimal numbers to 5-bit 2's complement numbers, and then				
	perform addition and subtraction on each pair. Indicate whether or not overflow occurs for	9			
	each case: i) 7 and 13 ii) –12 and 9.				
b.	Explain the main functional units of a computer with neat diagram.	9			
c.	A list of student marks is stored in memory. Entry for each student includes the student ID,				
	followed by the scores in 3 tests. Write a program to find the average marks of the class	9			
	scored in test 2. Assume that the processor has DIV instruction.				
	UNIT - II	18			
2 a.	Write a RISC style program using subroutine to add 5 numbers and store the result in	0			
	memory location SUM and read parameters using register.	9			
b.	Explain various shifts and rotate instruction with example used in RISC style machines.	9			
c.	Define Interrupt. Explain vectored Interrupt and Interrupt nesting.	9			
	UNIT - III	18			
3 a.	Write and explain the sequence of action needed to fetch and execute the instruction	9			
	Branch_if_ $[R3] \neq [R7]$ loop.	9			
b.	Explain with neat detailed timing diagram for the input transfer using synchronous bus.	9			
c.	Explain the main hardware components of a processor used for execution of instruction.	9			

P17IS35		Page No 2		
	UNIT - IV	18		
4 a.	Explain the organization of 1k x 1 memory chip with the help of neat diagram.	9		
b.	Explain virtual memory address translation with neat schematic representation.	9		
c.	Explain Direct Memory Access.	9		
	UNIT - V	18		
5 a.	Apply Booth and bit pair recoding algorithms to find the product of two 6 bit multiplicand			
	and Multipliers where multiplicand = 110101 and multiplier = 011011.	9		
b.	Apply restoring division algorithm for the following numbers 43/9.	9		
c.	Explain Flynn's taxonomy.	9		