\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Fifth Semester, B.E. - Computer Science and Engineering
 Semester End Examination; Feb. - 2021
 Operating System

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Explain operating system structure, services, types, design and implementation of OS.
CO2: Apply the various algorithms of process scheduling.
CO3: Develop solutions to process synchronization and deadlock problems.
CO4: Analyze various memory management techniques.
CO5: Explain file system implementation and allocation methods.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.

Questions
 I : PART - A

I a. What are virtual machines?
b. Write the difference between multilevel queue scheduling and multilevel feedback queue scheduling.
c. Define critical section problem.
d. What is memory fragmentation?
e. Describe directory structure.

II : PART - B

UNIT - I
1 a. List operating system operation and its importance of transition.
b. Define system call and system program. Write the importance of system program.
c. Explain process management and memory management.

UNIT - II
2 a. Explain the following with neat diagrams:
i) User level threads
ii) Kernel level threads
b. Discuss on Multi-threading models.
c. Consider the following set of process with arrival time

Process	Burst time	Arrival time
P_{1}	10	0
P_{2}	1	0
P_{3}	2	1
P_{4}	4	2
P_{5}	3	2

$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 2$
i) Draw the Gantt chart using FCFS, SJF preemptive and non-preemptive scheduling
ii) Calculate the waiting and average waiting for each of scheduling algorithm.

UNIT - III

3 a. Explain Dining Philosopher's problem using monitors. Define deadlock.
b. Explain different methods to recover from deadlock.
c. The operating system contains 3 resources; the number of instances of each type is $7,7,10$. The current resource allocation state is as shown below.

Process	Allocated resources			Max. requirements			
	R_{1}	R_{2}	R_{3}	R_{1}	R_{2}	R_{3}	
P_{1}	2	2	3	3	6	8	
P_{2}	2	0	3	4	3	3	
P_{3}	1	2	4	3	4	4	

Find the safe sequence using Banker's algorithm.
UNIT - IV
4 a . What are the functions performed by the virtual memory manger? Explain.
b. What is swapping? Does this increase the operating system overhead? Justify your answer.
c. For the following page reference string, calculate the number of page faults with FIFO and LRU page replacement policies when;
i) No. of page frames are 3
ii) No. of page frames are 4

Page reference string: $5 \times \begin{array}{llllllllllll}4 & 3 & 2 & 1 & 4 & 3 & 5 & 4 & 3 & 2 & 1 & 5\end{array}$
UNIT - V
5 a . With an example, explain different file allocation methods and bring out the advantages and disadvantages of each.
b. Suppose the position of cylinder is at 53 . Sketch the graphical representation for the queue of pending requests in the order $98,183,37,122,14,124,65,67$ for FCFS and SSTF and LOOK scheduling scheme.
c. Describe how access matrix can be implemented effectively.

