P18CS553 Page No... 1

TT CO BT					
U.S.14					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Computer Science and Engineering Semester End Examination; Feb. - 2021 Artificial Intelligence

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Define Artificial intelligence and identify problems for AI. Characterize the search techniques to solve problems and recognize the scope of classical search techniques.
- CO2: Define knowledge and its role in AI. Demonstrate the use of Logic in solving AI problems.
- CO3: Demonstrate handling of uncertain knowledge and reasoning in probability theory.
- CO4: Explain Learning methods in AI.
- CO5: Explain Knowledge Learning, probabilistic models and reinforcement learning in AI.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs COs	POs
•	I : PART - A	10		
I a.	Define rational agent.	2	L1 CO1	PO2
b.	Formulate existential quantification (\exists) for the following sentence	_	21 001	102
0.	"King john has a crown on his Head".	2	L6 CO2	PO3
c.	Discover Baye's theorem.	2	L4 CO3	PO2
d.	Construct, the entropy of a random variable V with values V_k , each with probability $P(V_k)$?	2	L3 CO4	PO9
e.	List variety of learning techniques.	2	L1 CO5	PO1
	II : PART - B	90		
	UNIT - I	18		
1 a.	Discover in detail, what artificial intelligence can do today in terms of applications.	6	L2 CO1	PO1
b.	List four basic kinds of agent programs, explain with neat diagram.	12	L3 CO1	PO1
c.	List Informed (Heuristic) search strategies. What is alpha-beta pruning? Construct Alpha-beta search algorithm.	12	L1 CO1	PO3
	UNIT - II	18		
2 a.	What is knowledge based agent? Illustrate the outline of a knowledge based	9	L1 CO2	DO2
	agent program.	9	Li CO2	F O 2
b.	Explain quantifiers with all notations and example.	9	L5 CO2	PO1
c.	Distinguish between forward chaining and backward chaining give example.	9	L4 CO2	PO10

UNIT - III 18

- 3 a. Define the following:
 - i) Uncertainly
 - L1 CO3 PO2 6 ii) Product rule
 - iii) Bayesian networks
 - b. Estimate $P(cavity \mid toothache)$, P(cavity), $P(cavity \mid toothache)$ and $P(\neg cavity/toothache)$ from the given Table 3.

	Toot	thache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Table 3. A full joint distribution for the toothache, cavity and catch world.

- c. Explain Hidden Markov models with location example and semantics of Bayesian network.
- 12 L5 CO3 PO2

L6 CO3 PO4

12

18

9

UNIT-IV

- 4 a. Create a decision tree for deciding whether to wait for a table at a restaurant.
- L6 CO4 PO3 9
- b. Compare univariate linear regression and multivariate linear regression.
- 9 L4 CO4 PO2
- c. Explain single-layer feed-forward neural networks and multilayer feed-forward neural networks.
- L5 CO4 PO2

UNIT - V

- 18
- b. Explain unsupervised clustering with example.

9 L5 CO5 PO12

L3 CO5 PO4

c. List the approaches how utilities can be learning explain in detail.

5 a. Construct an algorithm for finding a minimal consistent determination.

9 L1 CO5 PO1