U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 First Semester, B.E. - Semester End Examination; April - 2021
 Engineering Mechanics
 (Common to all Branches)

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to classify the force systems and compute its resultant.
CO2: Analyse the system of forces in equilibrium with or without frictional forces.
CO3: Locate the Centroid and composite moment of inertia of irregular and built up sections.
CO4: 4.Analyse the problems with respect to linear motion, curvilinear motion and energy.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	Questions I : PART - A	$\begin{gathered} \text { Marks } \\ 10 \end{gathered}$	BLs	COs	POs
I a.	Define principle of Transmissibility of force.	2	L1	CO1	PO1
b.	Briefly explain cone of friction.	2	L2	CO 2	PO1
c.	Define Axis of Symmetry.	2	L2	CO3	PO1
d.	Define Radius of gyration.	2	L1	CO3	PO2
e.	Define Superelevation.	2	L1	CO4	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a .	Briefly explain the basic idealization of the engineering mechanics.	9	L2	CO 2	PO1
	Determine the magnitude, direction and position of the resultant force with respect to 'O' for the system of force shown in Fig. Q.1(b).				

c. In the Fig Q. 1(c), the portion BC of the string is horizontal and pulley is frictionless. Determine tension in different parts of the string. Also find $W 1$ and $W 2$.

$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 2 \quad \mathrm{PO} 2$

Fig Q. 1 (c)

UNIT - II
2 a. With neat sketch, explain different types of loads and support.
b. Determine the reactions for a beam as shown in Fig. Q2(b).

c. A ladder 7 m long, weighing 300 N is resting against the wall at an angle 30° with the wall. A man weighing 700 N climbs the ladder, at what position does he induce slipping? Take $\mu=0.25$ for all contact surface.

> UNIT - III

3 a. Derive the Centroid of a quadrant of a circle by the method of integration.
b. Locate the Centroid of the plane shown in Fig. Q3(b)

$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \quad \mathrm{PO} 2$
$\begin{array}{llll} & \mathrm{L} 3 & \mathrm{CO} 3 & \mathrm{PO} 2\end{array}$

Contd... 3

UNIT - IV
4 a. Determine polar moment of Inertia for a I-section shown in Fig. Q4(a).

b. State and prove Parallel axis theorem.
c. Determine radius of gyration of shaded area shown in Fig. Q4(c) about the axis $A B$.

UNIT - V
5 a . A stone is dropped into well and the splash of sound is heard after 4 sec . Find the depth of well by assuming the velocity of sound as $335 \mathrm{~m} / \mathrm{s}$.
b. An aircraft moving horizontally at 120 kmph speed at an elevation of 1200 m targets a point on the ground and releases a bomb which hits it. Determine the horizontal distance of the aircraft (position when it releases the bomb) from the target. Also calculate the velocity and direction with which bomb hits the target.
c. A cricket ball is thrown from a height of 1.8 m above the ground level at angle 30° with the horizontal with a velocity $12 \mathrm{~m} / \mathrm{s}$ and is caught by the fielder at a height of 0.6 m above the ground. Determine the distance between the two players.

