

Determine the magnitude, direction and position of the resultant force b.

with respect to 'O' for the system of force shown in Fig. Q.1(b).

c. In the Fig Q. 1(c), the portion BC of the string is horizontal and pulley is frictionless. Determine tension in different parts of the string. Also find W1 and W2.

P18CV13			Page No 2		
	UNIT - II	18			
2 a.	With neat sketch, explain different types of loads and support.	9	L2	CO2	PO2
b.	Determine the reactions for a beam as shown in Fig. Q2(b).				
	tig.g.2(b)	9	L3	CO2	PO2
c.	A ladder 7 m long, weighing 300 N is resting against the wall at an angle 30° with the wall. A man weighing 700 N climbs the ladder, at what position does he induce slipping? Take $\mu = 0.25$ for all contact surface.	9	L3	CO2	PO2
	UNIT - III	18			
3 a.	Derive the Centroid of a quadrant of a circle by the method of integration.	9	L3	CO3	PO1

b. Locate the Centroid of the plane shown in Fig. Q3(b)

9 L3 CO3 PO2

c. Locate the Centroid of the shaded portion shown in Fig. Q3(c)

9 L3 CO3 PO2

Contd... 3

UNIT - IV

4 a. Determine polar moment of Inertia for a I-section shown in Fig. Q4(a).

b. State and prove Parallel axis theorem.

distance between the two players.

c. Determine radius of gyration of shaded area shown in Fig. Q4(c) about the axis *AB*.

	01111 - V	10			
5 a.	A stone is dropped into well and the splash of sound is heard after				
	4 sec. Find the depth of well by assuming the velocity of sound	9	L3	CO4	PO2
	as 335 m/s.				
b.	An aircraft moving horizontally at 120 kmph speed at an elevation of				
	1200 m targets a point on the ground and releases a bomb which hits it.				
	Determine the horizontal distance of the aircraft (position when it	9	L3	CO4	PO2
	releases the bomb) from the target. Also calculate the velocity and				
	direction with which bomb hits the target.				
c.	A cricket ball is thrown from a height of 1.8 m above the ground level				
	at angle 30° with the horizontal with a velocity 12 m/s and is caught by	9	L3	CO4	PO2
		9	LJ	004	102

* * *

the fielder at a height of 0.6 m above the ground. Determine the

18

9

L2

CO3

PO3