	<i>U.S.N</i>								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Civil Engineering Semester End Examination; March - 2021 Fluid Mechanics									
Time:		Мс	ıx. Mai	rks: 10	0				
CO1: A p u CO2: F CO3: 1 m CO4: A e	Course Outcomes dents will be able to: apply the knowledge of basic science and mathematics to differentiate a fluid and roperties, differentiate pressure and pressure head, analyze the fluid particles inderstand flow measurement phenomenon. formulate, interpret and analyze flow problems related with fluid particles either a dentify and quantify losses in a flow phenomenon for the efficient design of measuring devices. pply the knowledge of fluid mechanics in future to find efficient solutions to variation measuring either as an individual or as a team member to satisfy the changin	at rest of t rest or a pipe line pus proble	r in mo at motio and vo ems relo	tion and n. arious f ated to c	d to low civil				
<u>Note</u> : 1	eeds.) PART - A is compulsory. Two marks for each question.	1 6	,						
<i>II</i> Q. No.) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 mar Questions	ks from e Marks			PO				
2.110.	I : PART - A	10 10	DLS	COS	10				
I a.	State Newton's law of viscosity and write dimension for kinematic	2	L1	C01	PO				
	viscosity.		LI	cor	10				
b.	Define atmospheric pressure and gauge pressure.	2	L1	CO1	PO				
c.	Define laminar flow and turbulent flow.	2	L1	CO1	PO				
d.	What is an equivalent pipe? Write Dupuit's equation.	2	L1	CO1	PO				
e.	Define coefficient of discharge and vena contracta.	2	L1	CO1	PO				
	II : PART - B	90							
1 a.	UNIT - I Define;	18							
1 u.	i) Ideal fluid and Real fluid								
	ii) Surface tension and Dynamic viscosity	9	L1	CO1	PO				
	iii) Specific mass and Specific weight								
	Give the units for each of them.								
b.	Dynamic viscosity of oil used for lubrication between a shaft and a								
	sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 rpm.								
	Calculate the power lost in the bearing for shaft is of diameter 0.4 m and	9	L3	CO2	PO				
	rotates at 190 rpm. Calculate the power lost in the bearing for a sleeve								
	length of 0.09 m. Take thickness of oil as 1.5 mm.								
c.	Define Capillarity. If 5 m ³ of certain liquid weighs 39240 N. Calculate								
	specific weight, mass density, specific gravity. Assume specific weight	9	12	CO^{2}	DC				
	of water at 4°C as 9810 N/m ³ .	9	L3	CO2	PU				
	Contd 2								

Page No... 1

P18CV35

P18CV35			Page No 2	
	UNIT - II	18		
2 a.	Show that the center of pressure always lies below the centroid of a	0	т 2	CO2 DO2
	plane surface immersed vertically in fluid at rest.	9	L3	CO2 PO2
b.	i) Differentiate between Simple manometer and Differential manometer.			
	ii) Two pressure tanks are filled one inside the other as shown in Fig. 2(b). A bourdon gauge (M) connected to the inner tank reads 20 Kpa, another bourdon gauge N connected to the outer tank reads 35 Kpa. An aneroid barometer reads 750 mm of mercury. Calculate the absolute pressure recorded at M and N in terms of mercury.	9	L2	CO1 PO1
	Fig. 2(b)			
c.	Define total pressure. Find magnitude and direction of resultant force due to water acting on a roller gate of cylindrical from of 4 m diameter, when the gate is placed in such a way that the water is just going to spill,	9	L3	CO2 PO2
	take the width of the gate as 8 m.			
	UNIT - III	18		
3 a.	State continuity equation. Derive the same for three dimensional flows.	9	L3	CO2 PO2
b.	Define velocity potential function. The stream function for a two			
	dimensional flow is given by $\Psi = 2xy$. Calculate the velocity at the	9	L3	CO2 PO2
	points (2, 3). Find also the velocity potential function φ .			
c.	i) State Bernoulli's theorem and mention the assumptions made in			
	derivation of Bernoulli's theorem.			
	ii) A pitot static tube in the center of the pipe of diameter 0.3 m has one			
	orifice facing upstream and the other perpendicular to it. The mean	9	L1	CO2 PO2
	velocity of the flow is 0.8 times the central velocity. Calculate the			
	discharge through the pipe, if the pressure difference between the			
	two orifices is 0.06 m. Take $C_v = 0.98$.			
	UNIT - IV	18		
4 a.	Distinguish between;			
	i) Major loss and Minor losses	_	- ·	
	ii) Hydraulic gradient line and Total energy line	9	L2	CO1 PO1
	iii) Pipes in series and Pipes in parallel			

P18CV35		Pag	Page No 3	
b. Derive an expression for head loss due to friction.	9	L3	CO2 PO2	
c. i) Explain water hammer in pipes.				
ii) Two reservoirs are connected by two parallel pipes	their diameters			
are 300 mm and 350 mm and lengths are 3.15 k	cm and 3.5 km	L3	CO3 PO2	
respectively and the respective friction factor are 0.02		L3	005 102	
What will be the discharge from the larger pipe if t	the smaller pipe			
carries discharge of 285 Lps?				
UNIT - V	18			
5 a. Derive an expression for discharge through a triang	ular notch and 9	L3	CO2 PO2	
mention its advantages.)	L3	02 102	
b. I) Distinguish between;				
i) Orifice and Mouth piece	9	L2	CO1 PO1	
ii) Notch and Weir)	L		
II) Explain why ventilation of suppressed weirs is necess	sary?			
c. Define cipolletti notch. A rectangular 0.4 m long is used	for measuring a			
discharge of 30 Lps. An error of 1.5 mm was made whil	e measuring the 9	L3	CO4 PO2	
head over the notch. Calculate the percentage error in		Ц.)	04 102	
Take $C_d = 0.6$.				

* * *