\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Civil Engineering
 Semester End Examination; March - 2021
 Fluid Mechanics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to differentiate a fluid and a solid, understand fluid properties, differentiate pressure and pressure head, analyze the fluid particles at rest or in motion and to understand flow measurement phenomenon.
CO2: Formulate, interpret and analyze flow problems related with fluid particles either at rest or at motion.
CO3: Identify and quantify losses in a flow phenomenon for the efficient design of pipe line and various flow measuring devices.
CO4: Apply the knowledge of fluid mechanics in future to find efficient solutions to various problems related to civil engineering either as an individual or as a team member to satisfy the changing professional and societal needs.

Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	Questions	Marks BLs COs POs
	I : PART - A	10

I a. State Newton's law of viscosity and write dimension for kinematic viscosity.
b. Define atmospheric pressure and gauge pressure.
c. Define laminar flow and turbulent flow.
d. What is an equivalent pipe? Write Dupuit's equation.
e. Define coefficient of discharge and vena contracta.

II : PART - B
 UNIT - I

1 a. Define;
i) Ideal fluid and Real fluid
ii) Surface tension and Dynamic viscosity
$9 \quad$ L1 CO1 PO1
iii) Specific mass and Specific weight

Give the units for each of them.
b. Dynamic viscosity of oil used for lubrication between a shaft and a sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 rpm . Calculate the power lost in the bearing for shaft is of diameter 0.4 m and rotates at 190 rpm . Calculate the power lost in the bearing for a sleeve length of 0.09 m . Take thickness of oil as 1.5 mm .
c. Define Capillarity. If $5 \mathrm{~m}^{3}$ of certain liquid weighs 39240 N . Calculate specific weight, mass density, specific gravity. Assume specific weight of water at $4^{\circ} \mathrm{C}$ as $9810 \mathrm{~N} / \mathrm{m}^{3}$.

UNIT - II

2 a . Show that the center of pressure always lies below the centroid of a plane surface immersed vertically in fluid at rest.
b. i) Differentiate between Simple manometer and Differential manometer.
ii) Two pressure tanks are filled one inside the other as shown in Fig. 2(b). A bourdon gauge (M) connected to the inner tank reads 20 Kpa , another bourdon gauge N connected to the outer tank reads 35 Kpa . An aneroid barometer reads 750 mm of mercury. Calculate the absolute pressure recorded at M and N in terms of mercury.

c. Define total pressure. Find magnitude and direction of resultant force due to water acting on a roller gate of cylindrical from of 4 m diameter, when the gate is placed in such a way that the water is just going to spill, take the width of the gate as 8 m .

UNIT - III

3 a. State continuity equation. Derive the same for three dimensional flows.
b. Define velocity potential function. The stream function for a two dimensional flow is given by $\Psi=2 x y$. Calculate the velocity at the points $(2,3)$. Find also the velocity potential function φ.
c. i) State Bernoulli's theorem and mention the assumptions made in derivation of Bernoulli's theorem.
ii) A pitot static tube in the center of the pipe of diameter 0.3 m has one orifice facing upstream and the other perpendicular to it. The mean velocity of the flow is 0.8 times the central velocity. Calculate the discharge through the pipe, if the pressure difference between the two orifices is 0.06 m . Take $C_{v}=0.98$.

UNIT - IV
$9 \quad \mathrm{~L} 1 \quad \mathrm{CO} 2 \mathrm{PO} 2$

4 a. Distinguish between;
i) Major loss and Minor losses
ii) Hydraulic gradient line and Total energy line

Fig. 2(b)

Outer tank

iii) Pipes in series and Pipes in parallel

P18CV35

b. Derive an expression for head loss due to friction.
c. i) Explain water hammer in pipes.
ii) Two reservoirs are connected by two parallel pipes their diameters are 300 mm and 350 mm and lengths are 3.15 km and 3.5 km respectively and the respective friction factor are 0.0216 and 0.0325 . What will be the discharge from the larger pipe if the smaller pipe carries discharge of 285 Lps ?

UNIT - V

5 a. Derive an expression for discharge through a triangular notch and mention its advantages.
b. I) Distinguish between;
i) Orifice and Mouth piece
ii) Notch and Weir
II) Explain why ventilation of suppressed weirs is necessary?
c. Define cipolletti notch. A rectangular 0.4 m long is used for measuring a discharge of 30 Lps . An error of 1.5 mm was made while measuring the head over the notch. Calculate the percentage error in the discharge. Take $C_{d}=0.6$.
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \mathrm{PO} 2$

18
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 2$

9 L2 CO1 PO1
L2 CO1 PO1

PO2

