U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Civil Engineering
Semester End Examination; March - 2021
Strength of Materials
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to understand the concepts of stress at a point, strain at a point, and the stress-strain relationships for linear, elastic, homogeneous, isotropic materials.
CO2: Analyse structural members subjected to tension, compression, torsion, bending, combined stresses and internal pressure using the fundamental concepts of stress, strain, elastic behavior of materials and sketch BMD and SFD.
CO3: Compute the stresses and strains in members subjected to tension, compression, torsion, bending, combined stresses and internal pressure.
CO4: Apply the knowledge of strength of materials in future to work effectively either as an individual or as a team member to satisfy the changing professional and societal needs.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART-B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.
Q. No.

Questions

I: PART - A
1 a. Define Hooke's law.
b. Define principal stresses.
c. What do you mean by sagging bending moment and hogging bending moment?
d. Define bending stresses.
e. Distinguish between long and short columns.

II: PART - B

UNIT - I

1 a. Derive the expression for the deformation for a bar of uniformly tapering rectangular bar subjected to an axial force.
b. Different portions of a stepped bar are subjected to forces as shown in Fig. 1(b). Determine the stress induced and the net deformation in the bar Take $E=200 \mathrm{GPa}$.

9 L3 CO1 PO1,2
c. A concrete column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ carrying an axial load of 250 kN is reinforced with 4 numbers of 16 mm dia rods located at each corners. Determine the stress in steel and concrete. Also, determine the amount by which the column shortens. The length of the column is 300 mm . Take $E_{S}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $E_{C}=1.5 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT - II
2 a. Derive expressions for normal and tangential stresses on a given plane in a 2 D stress system.
b. Derive the expressions for circumferential and longitudinal stresses in case of thin cylinders.
c. Determine the maximum and minimum Hoop stress across the section of a pipe of 400 mm internal dia and 100 mm thick when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and Hoop stress distribution across the section.

UNIT - III

3 a. Analyze the simply supported beam of span ' L ' subjected to uniformly distributed load of w/unit length over the entire span. Sketch BMD and SFD.
b. Draw shear force and bending moment diagram for the beam shown in Fig 3(b).

L3 CO3 PO1,2

L3 CO3 PO1,2

UNIT - IV
4 a . Derive the equation of pure bending,
$\frac{M}{I}=\frac{f}{y}=\frac{E}{R}$ with usual notations. State the assumptions.

P18CV36

b. A circular pipe of internal diameter 70 mm and thickness 8 mm is used as a simply supported beam over an effective span of 2.5 m . Find the maximum concentrated load that can be applied at the centre of the span, if the permissible stress in the tube is $150 \mathrm{~N} / \mathrm{mm}^{2}$.
c. The Shear force acting on a section of a beam is 50 kN . The section of the beam is of T shaped with dimensions as shown in Fig. 4(c). The moment of Inertia about the horizontal neutral axis is $314.22 \times 10^{4} \mathrm{~mm}^{4}$. Sketch the shear stress distribution for the section.

UNIT - V

5 a. Derive Euler's Buckling load for both ends hinged column.
b. Find the maximum stress in propeller shaft 400 mm external dia and 200 mm internal dia when subjected to a twisting moment of $4650 \mathrm{~N}-\mathrm{m}$. If the modulus of rigidity is 82 GPa . How much is the twist in a length $=20$ times the dia?
c. A 1.5 m long C.I. column has a circular cross section of a 50 mm diameter. One end of the column is fixed in direction and position and the other is free. Taking fos $=3$. Calculate the safe load using;
i) Rankine-Grashoff formula. Take yield stress $=560 \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=\frac{1}{1600}$
ii) Euler's formula : $E=120 \mathrm{GN} / \mathrm{m}^{2}$

9 L1 CO4 PO1,2

9 L4 CO4 PO1,2

9 L3 CO5 PO1,2

9 L2 CO5 PO1,2

9 L2 CO5 PO1,2

