P17MA11

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; Dec. - 2019

Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Course Outcome's

The Students will be able to:

- CO1 Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
- CO2 Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
- CO3 Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
- CO4 Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.

Note: i) Part - A is compulsory, one question from each unit

ii) Part - B: Answer Two sub-questions for Maximum of 18 marks from each unit.

Q. No.		Marks	BLs	COs
-	I: PART - A	10	T 4	GO 1
I. a.	Find the n^{th} derivative of $\sin 4x \cos 2x$	2	L1	CO1
b.	State the Rolle's theorem.	2	L1	CO1
c.	Find the total differential of the function $u = x^3 + xy^2 + x^2y + y^3$.	2	L1	CO3
d.	Evaluate $\int_{0}^{\pi/2} \sin^6 x \cdot \cos^5 x dx$	2	L1	CO4
e.	Show that the differential equation $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ is exact.	2	L1	CO5
	II : PART - B	90		
	UNIT - I	18		
1 a.	State Leibritz theorem. If $y = (\sin^{-1} x)^2$ Show that,	0	т 1	GO1
	$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$	9	L1	CO1
b.	i) Find the angle between the radius vector and the tangent for the polar curve $r = a(1-\cos\theta)$	9	L1	CO1
	ii) Find the pedal equation of the curve $r(1-\cos\theta) = 2a$			
c.	Define radius of curvature. Find the radious of curvature for the curve.			
	$y^2 = \frac{4a^2(2a-x)}{x}$ Where the curve meets the x-axis.	9	L2	CO1
	UNIT - II	18		
2 a.	i) State the Lagrange's mean value theorem			
	ii) Verify the Cauchy's mean value theorem for the function $\sqrt{x+9}$ and \sqrt{x} in [0, 16]	9	L2	CO2
b.	i) State the Taylor's series expansion about the point $x=a$ upto the fourth degree term	9	L2	CO2
	ii) Expand $\log(\sec x)$ up to the term containing x^6 using Maclaurin's series.			

P17MA11

Page No... 2

Evaluate the following limits:

i)
$$\lim_{x \to a} \frac{x^x - a^x}{x^a - a^a}$$

i)
$$\lim_{x \to a} \frac{x^x - a^x}{x^a - a^a}$$
 ii)
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$$

UNIT-III

3 a. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ then prove that using,

Euler's theorem

i) $xu_x + yu_y = \sin 2u$

ii)
$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \sin 4u - \sin 2u$$

b. i) Define velocity and acceleration and also give the examples.

ii) Find the directional derivatives of,

$$\phi = x^2 vz + 4xz^2$$
 at $(1, -2, -1)$ along $2i - i - 2k$.

i) Define solenoidal and irrotational vector fields.

ii) Find the div
$$\vec{F}$$
 and curl \vec{F} where $\vec{F} = \nabla (x^3 + y^3 + z^3 - 3xyz)$

UNIT - IV

18

18

Obtain the reduction formula for $\int \sin^n x dx$ and $\int_{0}^{\frac{n}{2}} \sin^n x dx$ where *n* is a positive

9 L2 CO₄

integer and find $\int_{0}^{\pi/2} \cos^6 x dx$

i) Trace the curve $y^2(a-x) = x^3, a > 0$ (cissoid).

9 L2 CO₄

ii) Write the shape of the cardioid $r = a(1 + \cos \theta)$

c. Evaluate: $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx (\alpha \ge 0)$ using differentiation under the integral sign where α

18

9 L2 CO₄

is the parameter and hence find $\int_{0}^{1} \frac{x^3 - 1}{\log x} dx$

UNIT - V

i) Define Homogeneous differential equation. 5 a.

ii) Solve:
$$\left(1 + e^{x/y}\right) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$$

i) State exact differential equation b.

ii) solve:
$$\frac{dy}{dx} + 3x^2y = x^5e^{x^3}$$

If the air is maintained at 30°C and the temperature of the body cools from 80°C to 60°C in 12 minutes. Find the temperature of the body after 24 minutes.

9 L2 CO₅