\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; Dec. - 2019
 Engineering Mathematics - I

(Common to all Branches)
Time: 3 hrs
Max. Marks: 100

Course Outcome's

The Students will be able to:
CO1 - Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
CO2 - Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
CO3 - Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
CO4 - Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.

Note: i) Part - A is compulsory, one question from each unit
ii) Part - B : Answer Two sub-questions for Maximum of 18 marks from each unit.
Q. No.

Questions

Marks BLs COs
I : PART - A10
I. a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\sin 4 x \cos 2 x$
b. State the Rolle's theorem.
c. Find the total differential of the function $u=x^{3}+x y^{2}+x^{2} y+y^{3}$.
d. Evaluate $\int_{0}^{\pi / 2} \sin ^{6} x \cdot \cos ^{5} x d x$
e. Show that the differential equation $\left(y^{3}-3 x^{2} y\right) d x-\left(x^{3}-3 x y^{2}\right) d y=0$ is exact.

II : PART - B

UNIT - I
1 a. State Leibritz theorem. If $y=\left(\sin ^{-1} x\right)^{2}$ Show that, $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$
b. i) Find the angle between the radius vector and the tangent for the polar curve

$$
r=a(1-\cos \theta)
$$

ii) Find the pedal equation of the curve $r(1-\cos \theta)=2 a$
c. Define radius of curvature. Find the radious of curvature for the curve. $y^{2}=\frac{4 a^{2}(2 a-x)}{x}$ Where the curve meets the x-axis.

UNIT - II
2 a. i) State the Lagrange's mean value theorem
ii) Verify the Cauchy's mean value theorem for the function $\sqrt{x+9}$ and \sqrt{x} in

9 L2 CO2 $[0,16]$
b. i) State the Taylor's series expansion about the point $x=a$ upto the fourth degree term
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2$
ii) Expand $\log (\sec x)$ up to the term containing x^{6} using Maclaurin's series.
c. Evaluate the following limits:
i) $\lim _{x \rightarrow a} \frac{x^{x}-a^{x}}{x^{a}-a^{a}}$
ii) $\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\tan x}$

9
L2
CO 2

> UNIT - III

3 a. If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ then prove that using,
Euler's theorem
9
L2 CO3
i) $x u_{x}+y u_{y}=\sin 2 u$
ii) $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=\sin 4 u-\sin 2 u$
b. i) Define velocity and acceleration and also give the examples.
ii) Find the directional derivatives of, $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ along $2 i-j-2 k$.
c. i) Define solenoidal and irrotational vector fields.
ii) Find the $\operatorname{div} \vec{F}$ and curl \vec{F} where $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

UNIT - IV

4 a. Obtain the reduction formula for $\int \sin ^{n} x d x$ and $\int_{0}^{\pi / 2} \sin ^{n} x d x$ where n is a positive integer and find $\int_{0}^{\pi / 2} \cos ^{6} x d x$
b. i) Trace the curve $y^{2}(a-x)=x^{3}, a>0$ (cissoid).
ii) Write the shape of the cardioid $r=a(1+\cos \theta)$
c. Evaluate: $\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x(\alpha \geq 0)$ using differentiation under the integral sign where α is the parameter and hence find $\int_{0}^{1} \frac{x^{3}-1}{\log x} d x$

UNIT - V
18
5 a. i) Define Homogeneous differential equation.
ii) Solve: $\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$

9
L2 CO5
b. i) State exact differential equation
ii) solve: $\frac{d y}{d x}+3 x^{2} y=x^{5} e^{x^{3}}$

9 L2 CO5
c. If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $80^{\circ} \mathrm{C}$

9 L2 CO5 to $60^{\circ} \mathrm{C}$ in 12 minutes. Find the temperature of the body after 24 minutes.

