U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fifth Semester, B.E. - Civil Engineering
Semester End Examination; Feb. - 2021
Water Supply and Treatment

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Apply knowledge of mathematics to forecast population of community to determine total quantity of water to meet demands of community.
- CO2: Apply knowledge of basic science for testing and analyze the drinking water quality parameters from public health consideration as per standards.
- CO3: Design various water treatment units to remove selected impurities in raw water.
- CO4: Analyze the community pipe network of water distribution.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. *III)* Assume missing data if any.

Q. No.			Chiestian	S				Marks	KL/s	2()()	P()s
	Questions I : PART - A							DLS	COs	105	
								10			
I a. V	What do you mean by percapita demand of water? How it is calculated?						2	L2,L3	CO1	PO1	
b. V	Write briefly health s	ignificanc	e of fluor	ide in drii	nking wa	iter		2	L2	CO2	PO1,2
c. E	Briefly explain theory of gravity settling.						2	L2	CO3	PO3	
d. E	Explain briefly theory or mechanism of filteration.						2	L2	CO3	PO3	
e. E	Bring out briefly any two systems of water supply to community.						2	L2	CO4	PO2,5	
	II: PART - B						90				
	UNIT - I						18				
1 a. V	Write briefly different water demands of a community.					9	L2	CO1	PO1		
b. F	Forecast the population in the year 2021 by Arithmetic increase method										
a	and Incremental increase method from the data below.				0	1.0	GO1	DO1			
	Year	1971	1981	1991	2001	2011]	9	L3	CO1	PO1
	Population	18000	22000	27000	32500	37400					
c. V	With a neat sketch, explain river intake structure.					9	L3,L2	CO1	PO1		
	UNIT - II						18				
2 a. D	Define wholesome water and potable water. State requirements of					9	L2	CO2	PO1,2		
V	wholesome water.							9	L2	CO2	FO1,2
b. S	b. Sketch the flow diagram of conventional water treatment plant. Briefly				riefly	0	1.2	CO2	DO2		
e	explain impurities removed in each unit.						9	L3	CO3	PO3	
c. S	State the objectives of aeration of water. Explain any two types of					0		002	DO2		
		aerators with sketch.					9	L2	CO3	PO3	

P18CV52				Page No 2			
	UNIT - III	18					
3 a.	Define detention time and surface overflow rate for sedimentation tank.	9	L2	CO3	DO3		
	Briefly explain different types of sedimentation tanks.	9	L2	COS	103		
b.	A water supply scheme requires daily peak demand of 15 MLD. Design						
	a suitable rectangular sedimentation tank assuming the velocity of flow	9	L6	CO3	PO3		
	in the tank as 250 mm/min and the detention period of 4 hours. Assume	9	LU	CO3	103		
	depth of tank 4.0 m and free board of 0.5 m.						
c.	Explain briefly coagulation and flocculation. Describe jar test to find	9	L2,L3	CO3	PO3		
	optimum dosage of coagulant.	9	12,13	005	103		
	UNIT - IV	18					
4 a.	Bring out mechanism of filtration of water. With a neat sketch, explain	9	L 2 13	CO3	PO3		
	working of rapid sand filter.		12,13	200	105		
b.	Explain the action of chlorine in disinfection of water along with its	9	L2,L4	CO3	PO3		
	chemistry to kill microorganisms.		L2,L7	CO3	103		
c.	Design rapid sand filter for treating water supplied to a town having						
	population of one lakh assuming peak percapita demand as 270 LPCD.	9	L6	CO3	PO3		
	The rate of filtration may be taken as 4500 liter/hour/square meters.		Lo	005	105		
	Assume three set of filter units.						
	UNIT - V	18					
5 a.	With sketch, explain any two types of water distribution layout	9	L3	CO4	PO2		
	of pipe network.		23		102		
b.	Bring out Zeolite process of water softening.	9	L2	CO3	PO3		
c.	Write a note on;						
	i) Fire hydrant	9	L2	CO4	PO3		
	ii) Fluoridation and de-fluoridation.						