\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fifth Semester, B.E. - Civil Engineering Semester End Examination; Feb. - 2021
Analysis of Indeterminate Structures
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Analyze the redundant truss structures by strain energy method.
CO2: Analyze the continuous beams and frames by Slope Deflection method.
CO3: Analyze the continuous beams and frames by moment distribution method and Kani's method and understanding its iterative nature of obtaining solutions.
CO4: Analyze the continuous beams and frames by flexibility and stiffness matrix method of system approach.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	$\begin{gathered} \text { Marks } \\ 10 \end{gathered}$	BLs	COs	POs
I a.	Differentiate between statically determinate and indeterminate structure.	2	L2	CO1	PO 1,2
b.	Write the boundary conditions for fixed end and hinged end.	2	L1	CO 2	PO 1,2
c.	Define stiffness factor and distribution factor.	2	L1	CO 3	PO 1,2
d.	Write the advantages of Kani's method.	2	L1	CO3	PO 1,2
e.	Define flexibility coefficient $f_{i j}$ and stiffness coefficient $k_{i j}$.	2	L1	CO4	PO 1,2

II : PART - B	$\mathbf{9 0}$
UNIT - I	$\mathbf{1 8}$

1 a . Find the forces in all the members of the pin jointed plane frame shown in
Fig. Q1. a. Take cross sectional area for all the members as $10 \mathrm{~cm}^{2}$ and $E=200 \mathrm{GPa}$.

L4 CO1 PO 1,2

Figol.a
b. Analyze the truss shown in Fig. Q1. b by strain energy method. Use reaction $R_{C V}$ and member ' $B F$ ' as redundant. Take $E=200 \mathrm{GPa}$.
Note: number in parenthesis are area in cm^{2}

L4 CO1 PO 1,2

UNIT - II

2 a. Analyze the continuous beam shown in Fig. Q2.a by slope deflection method. Draw BMD and Elastic curve. Take $E I$ as $12 \times 10^{3} \mathrm{kN}-\mathrm{m}^{2}$.

Fig. $82 . a$
b. Analyze the rigid jointed frame shown in Fig. Q2.b by slope deflection method. Plot BMD and sketch the deflected shape of the frame. Take EI as constant.

Fig. ©a.b
UNIT - III
3 a. Analyze the continuous beam shown in Fig. Q3.a by moment distribution method. Draw SFD and BMD. Take $E=200 \mathrm{GPa}$ and $I=1.2 \times 10^{-4} \mathrm{~m}^{4}$

Fig.Q3.b

UNIT - IV

4 a. Analyze the continuous beam shown in Fig. Q4.a by Kani's method. Draw shear force diagram and BMD.

Fig. $84 \cdot \mathrm{a}$
b. Analyze the portal frame shown in Fig.Q4.b by Kani's method. Sketch the BMD and Elastic curve. Take EI as constant.

Fig. Q4.b
UNIT - V
5 a. Analyze the frame shown in Fig.Q5.a using Flexibility matrix method. Draw BMD and elastic curve.

